Vessel trajectory prediction with recurrent neural networks: an evaluation of datasets, features, and architectures

弹道 人工神经网络 计算机科学 人工智能 模式识别(心理学) 物理 天文
作者
Isaac Slaughter,Jagir Laxmichand Charla,Martin Siderius,John Lipor
出处
期刊:Journal of Ocean Engineering and Science [Elsevier BV]
被引量:3
标识
DOI:10.1016/j.joes.2024.01.002
摘要

Maritime situational awareness tasks such as port management, collision avoidance, and search-and-rescue missions rely on accurate knowledge of vessel locations. The availability of historical vessel trajectory data through the Automatic Identification System (AIS) has enabled the development of prediction methods, with a recent focus on trajectory prediction via recurrent neural networks (RNNs) and other deep learning architectures. While these methods have shown promising performance benefits over kinematic and clustering-based models, comparing among RNN-based models remains difficult due to variations in evaluation datasets, region sizes, vessel types, and numerous other design choices. As a result, it is not clear whether recent methods based on highly-sophisticated network architectures are necessary to achieve strong prediction performance. In this work, we present a simple fusion-based RNN approach to vessel trajectory prediction that allows for easy incorporation of exogenous variables. We perform an extensive ablation study to measure the impact of various modeling choices, including preprocessing, loss functions, and the choice of features, as well as the first usage of surface current information in vessel trajectory prediction. We demonstrate that our approach achieves state-of-the-art performance on three large regions off the United States coast, obtaining an improvement of up to 0.88 km over competing methods when predicting three hours into the future. We conclude that our simple architecture can outperform more complicated architectures while incurring a lower memory cost. Further, we show that the choice of loss function and the inclusion of surface current information both have significant impact on prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
excellent_shit完成签到,获得积分10
3秒前
小杭76应助李琳采纳,获得10
3秒前
zzz完成签到,获得积分10
3秒前
阳光的伊发布了新的文献求助10
4秒前
可爱的函函应助晓兜采纳,获得20
4秒前
浮游应助朱越群采纳,获得10
5秒前
6秒前
伶俐傲安发布了新的文献求助10
6秒前
7秒前
8秒前
图图烤肉发布了新的文献求助10
9秒前
xiao完成签到,获得积分10
11秒前
77发布了新的文献求助10
12秒前
danielbbbb发布了新的文献求助30
12秒前
思源应助小董哥采纳,获得10
14秒前
14秒前
NexusExplorer应助qiushui采纳,获得10
14秒前
科研通AI2S应助调皮摇伽采纳,获得10
14秒前
18秒前
18秒前
18秒前
张先森完成签到,获得积分10
19秒前
小马甲应助danielbbbb采纳,获得30
20秒前
李健应助科研通管家采纳,获得10
20秒前
20秒前
打打应助科研通管家采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
pei发布了新的文献求助10
20秒前
SciGPT应助科研通管家采纳,获得30
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
ccm应助科研通管家采纳,获得10
20秒前
20秒前
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288310
求助须知:如何正确求助?哪些是违规求助? 4440162
关于积分的说明 13823974
捐赠科研通 4322413
什么是DOI,文献DOI怎么找? 2372571
邀请新用户注册赠送积分活动 1368027
关于科研通互助平台的介绍 1331679