Vessel trajectory prediction with recurrent neural networks: an evaluation of datasets, features, and architectures

弹道 人工神经网络 计算机科学 人工智能 模式识别(心理学) 物理 天文
作者
Isaac Slaughter,Jagir Laxmichand Charla,Martin Siderius,John Lipor
出处
期刊:Journal of Ocean Engineering and Science [Elsevier]
被引量:3
标识
DOI:10.1016/j.joes.2024.01.002
摘要

Maritime situational awareness tasks such as port management, collision avoidance, and search-and-rescue missions rely on accurate knowledge of vessel locations. The availability of historical vessel trajectory data through the Automatic Identification System (AIS) has enabled the development of prediction methods, with a recent focus on trajectory prediction via recurrent neural networks (RNNs) and other deep learning architectures. While these methods have shown promising performance benefits over kinematic and clustering-based models, comparing among RNN-based models remains difficult due to variations in evaluation datasets, region sizes, vessel types, and numerous other design choices. As a result, it is not clear whether recent methods based on highly-sophisticated network architectures are necessary to achieve strong prediction performance. In this work, we present a simple fusion-based RNN approach to vessel trajectory prediction that allows for easy incorporation of exogenous variables. We perform an extensive ablation study to measure the impact of various modeling choices, including preprocessing, loss functions, and the choice of features, as well as the first usage of surface current information in vessel trajectory prediction. We demonstrate that our approach achieves state-of-the-art performance on three large regions off the United States coast, obtaining an improvement of up to 0.88 km over competing methods when predicting three hours into the future. We conclude that our simple architecture can outperform more complicated architectures while incurring a lower memory cost. Further, we show that the choice of loss function and the inclusion of surface current information both have significant impact on prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tuzi完成签到,获得积分10
刚刚
糕糕完成签到,获得积分10
刚刚
科研通AI2S应助欢喜的雁枫采纳,获得200
刚刚
含蓄的小熊猫完成签到 ,获得积分10
1秒前
alixy发布了新的文献求助10
1秒前
xiao柒柒柒发布了新的文献求助10
1秒前
一二发布了新的文献求助10
3秒前
温柔梦松完成签到 ,获得积分10
3秒前
sometimesawake完成签到,获得积分10
5秒前
Autin完成签到,获得积分10
5秒前
虾条完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
乐易天完成签到,获得积分10
6秒前
7秒前
abc完成签到 ,获得积分10
7秒前
清秀苗条完成签到,获得积分10
7秒前
牧之原翔子完成签到,获得积分10
8秒前
小谭完成签到 ,获得积分10
8秒前
小苏打完成签到,获得积分10
9秒前
生而追梦不止完成签到,获得积分10
10秒前
山城完成签到 ,获得积分10
10秒前
聪明飞飞完成签到,获得积分10
10秒前
bio-tang完成签到,获得积分10
10秒前
pophoo完成签到,获得积分10
10秒前
10秒前
xiao柒柒柒完成签到,获得积分10
11秒前
Clover04完成签到,获得积分10
11秒前
kellen完成签到,获得积分10
11秒前
居居应助Autin采纳,获得10
12秒前
lisastream发布了新的文献求助20
12秒前
于是完成签到,获得积分10
13秒前
心灵美的山蝶完成签到,获得积分10
13秒前
longtengfei完成签到,获得积分10
15秒前
yangzhang完成签到,获得积分10
15秒前
哈哈哈哈哈哈哈完成签到 ,获得积分10
17秒前
北国雪未消完成签到 ,获得积分10
18秒前
ZYC007完成签到,获得积分10
18秒前
一程完成签到 ,获得积分10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150700
求助须知:如何正确求助?哪些是违规求助? 2802232
关于积分的说明 7846614
捐赠科研通 2459579
什么是DOI,文献DOI怎么找? 1309294
科研通“疑难数据库(出版商)”最低求助积分说明 628849
版权声明 601757