Pasture Biomass Estimation Using Ultra-High-Resolution RGB UAVs Images and Deep Learning

RGB颜色模型 遥感 环境科学 生物量(生态学) 均方误差 精准农业 计算机科学 生长季节 天蓬 放牧 牧场 农业工程 农业 人工智能 统计 数学 农学 生态学 林业 地理 工程类 生物
作者
Milad Vahidi,Sanaz Shafian,Summer Thomas,Rory O. Maguire
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (24): 5714-5714 被引量:5
标识
DOI:10.3390/rs15245714
摘要

The continuous assessment of grassland biomass during the growth season plays a vital role in making informed, location-specific management choices. The implementation of precision agriculture techniques can facilitate and enhance these decision-making processes. Nonetheless, precision agriculture depends on the availability of prompt and precise data pertaining to plant characteristics, necessitating both high spatial and temporal resolutions. Utilizing structural and spectral attributes extracted from low-cost sensors on unmanned aerial vehicles (UAVs) presents a promising non-invasive method to evaluate plant traits, including above-ground biomass and plant height. Therefore, the main objective was to develop an artificial neural network capable of estimating pasture biomass by using UAV RGB images and the canopy height models (CHM) during the growing season over three common types of paddocks: Rest, bale grazing, and sacrifice. Subsequently, this study first explored the variation of structural and color-related features derived from statistics of CHM and RGB image values under different levels of plant growth. Then, an ANN model was trained for accurate biomass volume estimation based on a rigorous assessment employing statistical criteria and ground observations. The model demonstrated a high level of precision, yielding a coefficient of determination (R2) of 0.94 and a root mean square error (RMSE) of 62 (g/m2). The evaluation underscores the critical role of ultra-high-resolution photogrammetric CHMs and red, green, and blue (RGB) values in capturing meaningful variations and enhancing the model’s accuracy across diverse paddock types, including bale grazing, rest, and sacrifice paddocks. Furthermore, the model’s sensitivity to areas with minimal or virtually absent biomass during the plant growth period is visually demonstrated in the generated maps. Notably, it effectively discerned low-biomass regions in bale grazing paddocks and areas with reduced biomass impact in sacrifice paddocks compared to other types. These findings highlight the model’s versatility in estimating biomass across a range of scenarios, making it well suited for deployment across various paddock types and environmental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzzz发布了新的文献求助10
刚刚
搜集达人应助Y哦莫哦莫采纳,获得10
刚刚
hyhy完成签到 ,获得积分10
刚刚
科研通AI2S应助zzz采纳,获得10
刚刚
虚幻青曼发布了新的文献求助10
1秒前
1秒前
慕青应助GGBond采纳,获得10
1秒前
天天快乐应助杨知意采纳,获得10
2秒前
英姑应助无000采纳,获得10
2秒前
2秒前
2秒前
huster完成签到,获得积分10
2秒前
3秒前
3秒前
Travler完成签到,获得积分20
3秒前
4秒前
4秒前
NIUBEN完成签到,获得积分10
5秒前
rita完成签到,获得积分10
5秒前
4U完成签到,获得积分10
6秒前
6秒前
化学纯蓝色完成签到,获得积分10
7秒前
动听的古风完成签到,获得积分10
7秒前
苏瑾发布了新的文献求助10
7秒前
反杀闰土的猹完成签到,获得积分10
7秒前
和平发展发布了新的文献求助10
7秒前
8秒前
8秒前
ck发布了新的文献求助30
8秒前
1b发布了新的文献求助10
8秒前
8秒前
Ccc发布了新的文献求助10
9秒前
linhuom发布了新的文献求助10
9秒前
孙友浩完成签到,获得积分10
9秒前
朴实流沙发布了新的文献求助10
9秒前
伶俐的不尤完成签到,获得积分10
10秒前
10秒前
10秒前
skt发布了新的文献求助10
11秒前
希望天下0贩的0应助小杨采纳,获得10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3588643
求助须知:如何正确求助?哪些是违规求助? 3157066
关于积分的说明 9513741
捐赠科研通 2859952
什么是DOI,文献DOI怎么找? 1571680
邀请新用户注册赠送积分活动 737323
科研通“疑难数据库(出版商)”最低求助积分说明 722218