Brain responses to a lab-evolved artificial language with space-time metaphors

心理学 认知科学 语言习得 认知心理学 社会文化进化 变化(天文学) 多样性(控制论) 沟通 计算机科学 人工智能 社会学 物理 数学教育 天体物理学 人类学
作者
Tessa Verhoef,Tyler Marghetis,Esther Walker,Seana Coulson
出处
期刊:Cognition [Elsevier]
卷期号:246: 105763-105763 被引量:2
标识
DOI:10.1016/j.cognition.2024.105763
摘要

What is the connection between the cultural evolution of a language and the rapid processing response to that language in the brains of individual learners? In an iterated communication study that was conducted previously, participants were asked to communicate temporal concepts such as "tomorrow," "day after," "year," and "past" using vertical movements recorded on a touch screen. Over time, participants developed simple artificial 'languages' that used space metaphorically to communicate in nuanced ways about time. Some conventions appeared rapidly and universally (e.g., using larger vertical movements to convey greater temporal durations). Other conventions required extensive social interaction and exhibited idiosyncratic variation (e.g., using vertical location to convey past or future). Here we investigate whether the brain's response during acquisition of such a language reflects the process by which the language's conventions originally evolved. We recorded participants' EEG as they learned one of these artificial space-time languages. Overall, the brain response to this artificial communication system was language-like, with, for instance, violations to the system's conventions eliciting an N400-like component. Over the course of learning, participants' brain responses developed in ways that paralleled the process by which the language had originally evolved, with early neural sensitivity to violations of a rapidly-evolving universal convention, and slowly developing neural sensitivity to an idiosyncratic convention that required slow social negotiation to emerge. This study opens up exciting avenues of future work to disentangle how neural biases influence learning and transmission in the emergence of structure in language.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文的迎松完成签到 ,获得积分10
1秒前
3秒前
3秒前
乐乐应助Lanky采纳,获得10
3秒前
3秒前
3秒前
陈肖楠完成签到,获得积分10
4秒前
enterdawn应助务实的南露采纳,获得10
4秒前
茉茉茉茉茉L完成签到,获得积分10
5秒前
天天快乐应助胡巴采纳,获得10
6秒前
6秒前
7秒前
恶魔小艾发布了新的文献求助10
8秒前
大胆的茗茗完成签到,获得积分10
8秒前
背完单词好睡觉完成签到 ,获得积分10
8秒前
科研通AI2S应助天天向上采纳,获得10
10秒前
傲娇文博发布了新的文献求助10
10秒前
gyq发布了新的文献求助10
10秒前
11秒前
12秒前
13秒前
爆米花应助charitial采纳,获得10
14秒前
大白包子李完成签到,获得积分10
14秒前
开朗的又菱完成签到,获得积分10
16秒前
猴哥发布了新的文献求助10
17秒前
18秒前
牛牛月饼完成签到,获得积分10
18秒前
Akim应助恶魔小艾采纳,获得10
18秒前
科研通AI2S应助betty采纳,获得10
19秒前
19秒前
牛牛月饼发布了新的文献求助10
21秒前
车车发布了新的文献求助50
21秒前
ZHH完成签到,获得积分10
23秒前
子午发布了新的文献求助10
25秒前
上官若男应助ABS采纳,获得10
26秒前
活力书包完成签到 ,获得积分10
26秒前
28秒前
英姑应助李麟采纳,获得10
31秒前
猴哥完成签到,获得积分10
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260269
求助须知:如何正确求助?哪些是违规求助? 2901491
关于积分的说明 8315823
捐赠科研通 2571055
什么是DOI,文献DOI怎么找? 1396823
科研通“疑难数据库(出版商)”最低求助积分说明 653584
邀请新用户注册赠送积分活动 631997