Targeted transfer learning through distribution barycenter medium for intelligent fault diagnosis of machines with data decentralization

计算机科学 学习迁移 领域(数学分析) 断层(地质) 数据传输 原始数据 分布(数学) 权力下放 人工智能 适应(眼睛) 数据挖掘 分布式计算 机器学习 计算机网络 数学分析 地质学 物理 光学 地震学 数学 程序设计语言 法学 政治学
作者
Bin Yang,Yaguo Lei,Xiang Li,Naipeng Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:244: 122997-122997 被引量:30
标识
DOI:10.1016/j.eswa.2023.122997
摘要

Deep transfer learning-based fault diagnosis of machines is achieved based on the assumption that the source and target domain data could be centralized to assess the distribution discrepancy. In engineering scenarios, however, data centralization is difficult to true due to data privacy and the huge cost of large-volume data transmission and analysis. To achieve transfer fault diagnosis with respect to data decentralization, federated learning comes to reform the transfer fault diagnosis methods, where the intermedia distribution could serve as a medium to indirectly evaluate the cross-domain discrepancy instead of raw data centralization. Existing works have two weaknesses: (1) the conditional distribution discrepancy is mostly ignored by federated adaptation, and (2) there is no effective approach to generate the appreciated distribution medium. For these weaknesses, we propose a federated semi-supervised transfer fault diagnosis method called targeted transfer learning through distribution barycenter medium (TTL-DBM). The TTL-DBM contains a server and two clients respectively in the source and target domain sides. In the server, the auto-encoders are stacked to aggregate the key parameters of data distributions from both domain sides, and further generate the distribution barycenter as intermedia for federated adaptation. In two clients, the adaptation trajectory towards the distribution medium is designed according to the associated labels among the fully-labeled source domain and the one-shot labeled target domain. Through collaboratively training with the server and the clients, the joint distribution discrepancy across domains is reduced in a federated setting. The TTL-DBM is demonstrated in two cases including transfer diagnosis across different machine-used bearings as well as transfer diagnosis of industrial robots. The results show that TTL-DBM could obtain similar cross-domain features through the adaptation via distribution medium, and achieve higher diagnosis accuracy than other federated adaptation methods in the presence of data decentralization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超勍发布了新的文献求助10
3秒前
小马甲应助yuanshl1985采纳,获得10
3秒前
zhuxiaonian完成签到,获得积分10
6秒前
田様应助淘气科研采纳,获得10
6秒前
chenyi完成签到,获得积分10
7秒前
zyyyy完成签到,获得积分10
7秒前
奶黄包完成签到 ,获得积分10
7秒前
SYLH应助海阔天空采纳,获得10
7秒前
7秒前
机灵又蓝完成签到,获得积分10
8秒前
张土豆完成签到 ,获得积分10
8秒前
善学以致用应助小王采纳,获得10
8秒前
orang完成签到,获得积分10
9秒前
巧巧艾完成签到,获得积分10
9秒前
10秒前
邵洋完成签到,获得积分10
10秒前
sl发布了新的文献求助10
10秒前
11秒前
小迪迦奥特曼完成签到,获得积分10
11秒前
11秒前
cckk发布了新的文献求助10
12秒前
夏目由美完成签到 ,获得积分10
12秒前
Jasper应助哦哦哦采纳,获得10
13秒前
YYD完成签到,获得积分10
13秒前
超勍完成签到,获得积分10
13秒前
碧蓝碧凡发布了新的文献求助10
14秒前
Popeye应助鹤鸣采纳,获得30
14秒前
YYD发布了新的文献求助10
15秒前
yuanshl1985发布了新的文献求助10
15秒前
积极的黑猫完成签到,获得积分10
16秒前
GB完成签到 ,获得积分10
16秒前
Metx完成签到 ,获得积分10
17秒前
孤独的涔完成签到,获得积分10
18秒前
Jay完成签到,获得积分10
18秒前
19秒前
深情安青应助hf采纳,获得10
21秒前
学不懂数学应助大观天下采纳,获得10
21秒前
醉熏的水绿完成签到 ,获得积分10
21秒前
秦艺完成签到,获得积分10
22秒前
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029