Targeted transfer learning through distribution barycenter medium for intelligent fault diagnosis of machines with data decentralization

计算机科学 学习迁移 领域(数学分析) 断层(地质) 数据传输 原始数据 分布(数学) 权力下放 人工智能 适应(眼睛) 数据挖掘 分布式计算 机器学习 计算机网络 数学分析 数学 地震学 政治学 法学 地质学 物理 光学 程序设计语言
作者
Bin Yang,Yaguo Lei,Xiang Li,Naipeng Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:244: 122997-122997 被引量:30
标识
DOI:10.1016/j.eswa.2023.122997
摘要

Deep transfer learning-based fault diagnosis of machines is achieved based on the assumption that the source and target domain data could be centralized to assess the distribution discrepancy. In engineering scenarios, however, data centralization is difficult to true due to data privacy and the huge cost of large-volume data transmission and analysis. To achieve transfer fault diagnosis with respect to data decentralization, federated learning comes to reform the transfer fault diagnosis methods, where the intermedia distribution could serve as a medium to indirectly evaluate the cross-domain discrepancy instead of raw data centralization. Existing works have two weaknesses: (1) the conditional distribution discrepancy is mostly ignored by federated adaptation, and (2) there is no effective approach to generate the appreciated distribution medium. For these weaknesses, we propose a federated semi-supervised transfer fault diagnosis method called targeted transfer learning through distribution barycenter medium (TTL-DBM). The TTL-DBM contains a server and two clients respectively in the source and target domain sides. In the server, the auto-encoders are stacked to aggregate the key parameters of data distributions from both domain sides, and further generate the distribution barycenter as intermedia for federated adaptation. In two clients, the adaptation trajectory towards the distribution medium is designed according to the associated labels among the fully-labeled source domain and the one-shot labeled target domain. Through collaboratively training with the server and the clients, the joint distribution discrepancy across domains is reduced in a federated setting. The TTL-DBM is demonstrated in two cases including transfer diagnosis across different machine-used bearings as well as transfer diagnosis of industrial robots. The results show that TTL-DBM could obtain similar cross-domain features through the adaptation via distribution medium, and achieve higher diagnosis accuracy than other federated adaptation methods in the presence of data decentralization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调研昵称发布了新的文献求助30
1秒前
1秒前
我是老大应助易安采纳,获得10
1秒前
大啊蓉完成签到 ,获得积分10
1秒前
summuryi完成签到,获得积分10
2秒前
krovanh完成签到,获得积分10
2秒前
坦率的伟完成签到,获得积分10
2秒前
杨震完成签到 ,获得积分10
2秒前
矮小的寒天完成签到,获得积分10
3秒前
葡萄成熟发布了新的文献求助10
3秒前
魔女完成签到,获得积分10
3秒前
4秒前
4秒前
调研昵称发布了新的文献求助80
5秒前
dyj完成签到,获得积分10
5秒前
幽默胜完成签到,获得积分10
5秒前
开开心心的开心完成签到,获得积分10
5秒前
rid4iuclous2完成签到,获得积分10
6秒前
Serena完成签到,获得积分10
6秒前
小丸子呀完成签到 ,获得积分10
6秒前
6秒前
6秒前
想不出昵称完成签到,获得积分10
7秒前
7秒前
小二郎应助wall采纳,获得10
7秒前
卞卞完成签到,获得积分10
7秒前
调研昵称发布了新的文献求助80
8秒前
8秒前
所所应助小喵采纳,获得10
8秒前
liu完成签到,获得积分10
9秒前
9秒前
zjy03259发布了新的文献求助10
9秒前
淡然凌兰完成签到,获得积分10
10秒前
华仔应助wwww采纳,获得10
10秒前
机灵的孤丹完成签到,获得积分10
10秒前
花开半夏完成签到,获得积分10
10秒前
斯文败类应助xxxllllll采纳,获得10
10秒前
干羞花完成签到,获得积分10
10秒前
调研昵称发布了新的文献求助10
10秒前
Dannerys完成签到 ,获得积分10
11秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081744
求助须知:如何正确求助?哪些是违规求助? 2734831
关于积分的说明 7534536
捐赠科研通 2384276
什么是DOI,文献DOI怎么找? 1264252
科研通“疑难数据库(出版商)”最低求助积分说明 612606
版权声明 597600