亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Targeted transfer learning through distribution barycenter medium for intelligent fault diagnosis of machines with data decentralization

计算机科学 学习迁移 领域(数学分析) 断层(地质) 数据传输 原始数据 分布(数学) 权力下放 人工智能 适应(眼睛) 数据挖掘 分布式计算 机器学习 计算机网络 数学分析 地质学 物理 光学 地震学 数学 程序设计语言 法学 政治学
作者
Bin Yang,Yaguo Lei,Xiang Li,Naipeng Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:244: 122997-122997 被引量:30
标识
DOI:10.1016/j.eswa.2023.122997
摘要

Deep transfer learning-based fault diagnosis of machines is achieved based on the assumption that the source and target domain data could be centralized to assess the distribution discrepancy. In engineering scenarios, however, data centralization is difficult to true due to data privacy and the huge cost of large-volume data transmission and analysis. To achieve transfer fault diagnosis with respect to data decentralization, federated learning comes to reform the transfer fault diagnosis methods, where the intermedia distribution could serve as a medium to indirectly evaluate the cross-domain discrepancy instead of raw data centralization. Existing works have two weaknesses: (1) the conditional distribution discrepancy is mostly ignored by federated adaptation, and (2) there is no effective approach to generate the appreciated distribution medium. For these weaknesses, we propose a federated semi-supervised transfer fault diagnosis method called targeted transfer learning through distribution barycenter medium (TTL-DBM). The TTL-DBM contains a server and two clients respectively in the source and target domain sides. In the server, the auto-encoders are stacked to aggregate the key parameters of data distributions from both domain sides, and further generate the distribution barycenter as intermedia for federated adaptation. In two clients, the adaptation trajectory towards the distribution medium is designed according to the associated labels among the fully-labeled source domain and the one-shot labeled target domain. Through collaboratively training with the server and the clients, the joint distribution discrepancy across domains is reduced in a federated setting. The TTL-DBM is demonstrated in two cases including transfer diagnosis across different machine-used bearings as well as transfer diagnosis of industrial robots. The results show that TTL-DBM could obtain similar cross-domain features through the adaptation via distribution medium, and achieve higher diagnosis accuracy than other federated adaptation methods in the presence of data decentralization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵自中完成签到,获得积分10
14秒前
执着的草丛完成签到,获得积分10
24秒前
25秒前
Anna完成签到 ,获得积分10
26秒前
40秒前
绝世冰淇淋完成签到 ,获得积分10
46秒前
科研通AI5应助科研通管家采纳,获得50
46秒前
breeze完成签到,获得积分10
47秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
顺心蜜粉给远航的求助进行了留言
1分钟前
silence发布了新的文献求助10
1分钟前
zhanglq发布了新的文献求助10
1分钟前
silence完成签到,获得积分10
1分钟前
CipherSage应助zhaoaotao采纳,获得10
1分钟前
1分钟前
1分钟前
zhaoaotao发布了新的文献求助10
1分钟前
科研通AI5应助祖之微笑采纳,获得10
1分钟前
zhaoaotao完成签到,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
隐形曼青应助Master采纳,获得10
2分钟前
2分钟前
科研通AI5应助小嘉采纳,获得10
2分钟前
2分钟前
小嘉发布了新的文献求助10
2分钟前
大个应助哈尔滨采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
郗妫完成签到,获得积分10
2分钟前
顺心蜜粉完成签到,获得积分10
2分钟前
3分钟前
Master发布了新的文献求助10
3分钟前
英俊的铭应助Magali采纳,获得10
3分钟前
3分钟前
3分钟前
祖之微笑发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976649
求助须知:如何正确求助?哪些是违规求助? 3520756
关于积分的说明 11204743
捐赠科研通 3257502
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629