Explicit knowledge transfer of graph-based correlation distillation and diversity data hallucination for few-shot object detection

图形 人工智能 相关性 计算机科学 对象(语法) 知识图 蒸馏 多样性(政治) 模式识别(心理学) 计算机视觉 单发 数学 理论计算机科学 化学 物理 色谱法 几何学 社会学 人类学 光学
作者
Meng Wang,Yang Wang,Haipeng Liu
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:: 104958-104958
标识
DOI:10.1016/j.imavis.2024.104958
摘要

The performance of few-shot object detection has seen marked improvement through fine-tuning paradigms. However, existing methods often depend on shared parameters to implicitly transfer knowledge without explicit induction. This results in novel-class representations that are easily confused with similar base classes and poorly suited to diverse patterns of variation in the truth distribution. In view of this, the present paper focuses on mining transferable base-class knowledge, which is further subdivided into inter-class correlation and intra-class diversity. First, we design a graph to dynamically capture the relationship between base and novel class representations, and then introduce distillation techniques to tackle the shortage of correlation knowledge in few-shot labels. Furthermore, an efficient diversity knowledge transfer module based on the data hallucination is proposed, which can adaptively disentangle class-independent variation patterns from base-class features and generate additional trainable hallucinated instances for novel classes. Experiments on VOC and COCO datasets confirmed that our proposed method effectively reduces the reliance on novel-class samples and demonstrates superior performance compared to other state-of-the-art baseline methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
深情安青应助Fly采纳,获得10
1秒前
1秒前
mikaqyan发布了新的文献求助10
1秒前
心向阳光完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
3秒前
3秒前
夏天夏天悄悄过去完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
jianrobsim发布了新的文献求助30
4秒前
4秒前
wzyyyyue发布了新的文献求助30
4秒前
4秒前
文静的立诚完成签到,获得积分10
4秒前
niko发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
niko发布了新的文献求助10
5秒前
5秒前
没有腹肌的龙虾完成签到,获得积分10
5秒前
风向仪完成签到,获得积分10
5秒前
niko发布了新的文献求助10
6秒前
6秒前
niko发布了新的文献求助10
6秒前
niko发布了新的文献求助30
6秒前
默默海冬完成签到,获得积分10
7秒前
niko发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525160
求助须知:如何正确求助?哪些是违规求助? 4615470
关于积分的说明 14548546
捐赠科研通 4553537
什么是DOI,文献DOI怎么找? 2495334
邀请新用户注册赠送积分活动 1475908
关于科研通互助平台的介绍 1447670