Explicit knowledge transfer of graph-based correlation distillation and diversity data hallucination for few-shot object detection

图形 人工智能 相关性 计算机科学 对象(语法) 知识图 蒸馏 多样性(政治) 模式识别(心理学) 计算机视觉 单发 数学 理论计算机科学 化学 物理 色谱法 几何学 社会学 人类学 光学
作者
Meng Wang,Yang Wang,Haipeng Liu
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:: 104958-104958
标识
DOI:10.1016/j.imavis.2024.104958
摘要

The performance of few-shot object detection has seen marked improvement through fine-tuning paradigms. However, existing methods often depend on shared parameters to implicitly transfer knowledge without explicit induction. This results in novel-class representations that are easily confused with similar base classes and poorly suited to diverse patterns of variation in the truth distribution. In view of this, the present paper focuses on mining transferable base-class knowledge, which is further subdivided into inter-class correlation and intra-class diversity. First, we design a graph to dynamically capture the relationship between base and novel class representations, and then introduce distillation techniques to tackle the shortage of correlation knowledge in few-shot labels. Furthermore, an efficient diversity knowledge transfer module based on the data hallucination is proposed, which can adaptively disentangle class-independent variation patterns from base-class features and generate additional trainable hallucinated instances for novel classes. Experiments on VOC and COCO datasets confirmed that our proposed method effectively reduces the reliance on novel-class samples and demonstrates superior performance compared to other state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6666应助可yi采纳,获得10
1秒前
2秒前
充电宝应助bayernxw采纳,获得10
2秒前
Yinp发布了新的文献求助10
4秒前
甘雨露发布了新的文献求助30
5秒前
抹茶小鱼仔完成签到,获得积分10
6秒前
楊書銘发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
寒鸦浮水应助醉熏的飞薇采纳,获得10
7秒前
8秒前
9秒前
奥特曼完成签到 ,获得积分10
10秒前
雯雯少完成签到,获得积分10
10秒前
lucky完成签到 ,获得积分10
10秒前
科研顺路完成签到,获得积分10
11秒前
Passer发布了新的文献求助10
11秒前
11秒前
weixiaozdw完成签到,获得积分10
11秒前
善学以致用应助侯宜彤采纳,获得10
12秒前
13秒前
14秒前
东方元语应助ZM采纳,获得20
14秒前
14秒前
潇洒的凝梦完成签到 ,获得积分10
14秒前
ZYXX关注了科研通微信公众号
16秒前
SciGPT应助cy__采纳,获得10
16秒前
大壮发布了新的文献求助10
16秒前
Lucas应助科研顺路采纳,获得10
16秒前
CHEN__02_发布了新的文献求助10
17秒前
17秒前
合适以丹发布了新的文献求助10
18秒前
18秒前
无所谓啊发布了新的文献求助10
18秒前
19秒前
20秒前
爱读文献的小张完成签到,获得积分10
20秒前
思源应助Zev采纳,获得30
22秒前
哈密瓜发布了新的文献求助10
22秒前
heyan完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474294
求助须知:如何正确求助?哪些是违规求助? 4576074
关于积分的说明 14356323
捐赠科研通 4503948
什么是DOI,文献DOI怎么找? 2467855
邀请新用户注册赠送积分活动 1455613
关于科研通互助平台的介绍 1429618