ToxMPNN: A deep learning model for small molecule toxicity prediction

毒性 机器学习 人工智能 医学 计算机科学 内科学
作者
Yini Zhou,Chao Ning,Yijun Tan,Yaqi Li,Jiaxu Wang,Yuanyuan Shu,Songping Liang,Zhonghua Liu,Ying Wang
出处
期刊:Journal of Applied Toxicology [Wiley]
标识
DOI:10.1002/jat.4591
摘要

Abstract Machine learning (ML) has shown a great promise in predicting toxicity of small molecules. However, the availability of data for such predictions is often limited. Because of the unsatisfactory performance of models trained on a single toxicity endpoint, we collected toxic small molecules with multiple toxicity endpoints from previous study. The dataset comprises 27 toxic endpoints categorized into seven toxicity classes, namely, carcinogenicity and mutagenicity, acute oral toxicity, respiratory toxicity, irritation and corrosion, cardiotoxicity, CYP450, and endocrine disruption. In addition, a binary classification Common‐Toxicity task was added based on the aforementioned dataset. To improve the performance of the models, we added marketed drugs as negative samples. This study presents a toxicity predictive model, ToxMPNN, based on the message passing neural network (MPNN) architecture, aiming to predict the toxicity of small molecules. The results demonstrate that ToxMPNN outperforms other models in capturing toxic features within the molecular structure, resulting in more precise predictions with the ROC_AUC testing score of 0.886 for the Toxicity_drug dataset. Furthermore, it was observed that adding marketed drugs as negative samples not only improves the predictive performance of the binary classification Common‐Toxicity task but also enhances the stability of the model prediction. It shows that the graph‐based deep learning (DL) algorithms in this study can be used as a trustworthy and effective tool to assess small molecule toxicity in the development of new drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼呼哈哈完成签到,获得积分10
3秒前
3秒前
Joe完成签到,获得积分10
6秒前
7秒前
7秒前
rasmus完成签到 ,获得积分10
7秒前
9秒前
9秒前
11秒前
GK发布了新的文献求助10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
百无禁忌应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
LARS应助科研通管家采纳,获得10
12秒前
高大凌寒应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
我是老大应助馒头采纳,获得30
12秒前
华仔应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
13秒前
安逸1发布了新的文献求助10
14秒前
llxie发布了新的文献求助10
15秒前
顾矜应助小罗采纳,获得10
17秒前
18秒前
研友_85Ymz8发布了新的文献求助20
18秒前
llxie完成签到,获得积分10
21秒前
CodeCraft应助安逸1采纳,获得10
21秒前
Dr_Stars完成签到,获得积分10
23秒前
zhuanghj5完成签到 ,获得积分10
24秒前
hezi完成签到,获得积分10
25秒前
FashionBoy应助GZX采纳,获得10
25秒前
直率的雪晴完成签到,获得积分10
25秒前
tzy完成签到,获得积分10
27秒前
27秒前
蛋黄苏完成签到,获得积分10
27秒前
28秒前
天天快乐应助韩丙宇采纳,获得10
29秒前
30秒前
zhuanghj5发布了新的文献求助10
32秒前
李健应助starcatcher采纳,获得10
33秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165460
求助须知:如何正确求助?哪些是违规求助? 2816530
关于积分的说明 7913032
捐赠科研通 2476092
什么是DOI,文献DOI怎么找? 1318663
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388