ToxMPNN: A deep learning model for small molecule toxicity prediction

毒性 机器学习 人工智能 医学 计算机科学 内科学
作者
Yini Zhou,Chao Ning,Yijun Tan,Yaqi Li,Jiaxu Wang,Yuanyuan Shu,Songping Liang,Zhonghua Liu,Ying Wang
出处
期刊:Journal of Applied Toxicology [Wiley]
卷期号:44 (7): 953-964 被引量:6
标识
DOI:10.1002/jat.4591
摘要

Abstract Machine learning (ML) has shown a great promise in predicting toxicity of small molecules. However, the availability of data for such predictions is often limited. Because of the unsatisfactory performance of models trained on a single toxicity endpoint, we collected toxic small molecules with multiple toxicity endpoints from previous study. The dataset comprises 27 toxic endpoints categorized into seven toxicity classes, namely, carcinogenicity and mutagenicity, acute oral toxicity, respiratory toxicity, irritation and corrosion, cardiotoxicity, CYP450, and endocrine disruption. In addition, a binary classification Common‐Toxicity task was added based on the aforementioned dataset. To improve the performance of the models, we added marketed drugs as negative samples. This study presents a toxicity predictive model, ToxMPNN, based on the message passing neural network (MPNN) architecture, aiming to predict the toxicity of small molecules. The results demonstrate that ToxMPNN outperforms other models in capturing toxic features within the molecular structure, resulting in more precise predictions with the ROC_AUC testing score of 0.886 for the Toxicity_drug dataset. Furthermore, it was observed that adding marketed drugs as negative samples not only improves the predictive performance of the binary classification Common‐Toxicity task but also enhances the stability of the model prediction. It shows that the graph‐based deep learning (DL) algorithms in this study can be used as a trustworthy and effective tool to assess small molecule toxicity in the development of new drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助hww采纳,获得10
1秒前
哈哈哈完成签到,获得积分10
4秒前
平常雨泽发布了新的文献求助10
4秒前
苏卿应助学术底层fw采纳,获得10
4秒前
Akim应助玉米也会爆采纳,获得10
4秒前
vvSirius完成签到,获得积分10
8秒前
8秒前
8秒前
kingwill举报浅陌亦汐求助涉嫌违规
9秒前
lswhyr发布了新的文献求助10
11秒前
12秒前
香蕉觅云应助季荷采纳,获得10
12秒前
12秒前
希望天下0贩的0应助TURBO采纳,获得10
12秒前
13秒前
516165165完成签到,获得积分10
13秒前
归尘发布了新的文献求助10
13秒前
动人的忆南完成签到 ,获得积分10
13秒前
14秒前
宓鲂完成签到,获得积分10
14秒前
喵喵喵完成签到 ,获得积分10
16秒前
17秒前
17秒前
19秒前
张赛完成签到,获得积分10
20秒前
20秒前
21秒前
森水垚完成签到,获得积分10
21秒前
LJ发布了新的文献求助10
21秒前
22秒前
秀丽的平彤完成签到,获得积分20
22秒前
rtx00完成签到,获得积分10
23秒前
25秒前
26秒前
Iris发布了新的文献求助10
26秒前
顺心香菇给小李要毕业的求助进行了留言
27秒前
27秒前
28秒前
菜菜完成签到 ,获得积分10
28秒前
汉堡包应助9595采纳,获得10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Examining the factors affecting users' payment intention of video knowledge products 200
Handbook of Laboratory Animal Science 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3698243
求助须知:如何正确求助?哪些是违规求助? 3249315
关于积分的说明 9863284
捐赠科研通 2960893
什么是DOI,文献DOI怎么找? 1623747
邀请新用户注册赠送积分活动 768844
科研通“疑难数据库(出版商)”最低求助积分说明 741904