清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Method for early diagnosis of verticillium wilt in cotton based on chlorophyll fluorescence and hyperspectral technology

大丽花黄萎病 高光谱成像 小波 园艺 黄萎病 人工智能 数学 模式识别(心理学) 生物 计算机科学
作者
Mi Yang,Xiaoyan Kang,Xiaofeng Qiu,Lulu Ma,Hong Ren,Changping Huang,Ze Zhang,Xin Lv
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108497-108497 被引量:19
标识
DOI:10.1016/j.compag.2023.108497
摘要

Early and accurate detection of verticillium wilt (VW), the most common and devastating disease of cotton, is essential to prevent the spread of VW. However, it remains challenging to achieve accurate detection of VW in cotton before symptoms appear after infection with Verticillium dahliae (asymptomatic phase). This study evaluated the feasibility of detection of VW in the asymptomatic phase based on cotton main stem leaf chlorophyll fluorescence parameters (CFPs) and spectral features extracted based on continuous wavelet transform (CWT) in two different environments. The aim was to achieve accurate detection of cotton VW in the asymptomatic period by convenient methods. Hyperspectral data of cottons inoculated with V. dahliae were collected at different times, and the CFPs of main stem leaves were measured simultaneously. After preprocessing the hyperspectral data with CWT, common wavelet features for all spectral acquisition days and sensitive CFPs were extracted based on the results of ANOVA. Then, the variance inflation factor combined with least absolute shrinkage and selection operator (LASSO-VIF) was used to select the optimal wavelet features. Finally, the support vector machine, logistic regression, and k-nearest neighbors (KNN) were used to construct the models for detecting VW in asymptomatic leaves based on CFPs and optimal wavelet features, and the accuracy of the models were compared. The results showed that the CFPs were significantly affected 24 h after V. dahliae infection. V. dahliae infection reduced the maximum quantum yield (Pm') of photosystem II (PSII) and increased non-photochemical quenching (NPQt) in cotton leaves. Compared with the raw spectrum, the spectral features in the near-infrared region (800–1350 nm) extracted based on CWT could accurately reflect the subtle changes of leaves in the asymptomatic phase. Besides, compared with CFPs, the 4–5 wavelet features selected based on the LASSO-VIF were more helpful to accurately identify asymptomatic cotton leaves infected with V. dahliae, with an accuracy greater than 80 % and a Kappa coefficient higher than 0.6. Among them, the average accuracy of the logistic regression model based on wavelet features was as high as 90.62 %. The results of this study confirm the changes in CFPs in cotton leaves in the VW-asymptomatic period and the feasibility of accurate identification by using wavelet features. This study will provide a reliable reference for accurate large-scale identification of V. dahliae infection in cotton in the asymptomatic phase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
doublenine18发布了新的文献求助50
刚刚
刚刚
12秒前
斯文败类应助顾灵毓采纳,获得10
29秒前
30秒前
36秒前
40秒前
顾灵毓发布了新的文献求助10
41秒前
可爱的函函应助顾灵毓采纳,获得10
50秒前
57秒前
1分钟前
1分钟前
1分钟前
1分钟前
顾灵毓发布了新的文献求助10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
李健应助顾灵毓采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
顾灵毓发布了新的文献求助10
2分钟前
2分钟前
HJJ完成签到 ,获得积分10
2分钟前
2分钟前
顾灵毓完成签到,获得积分10
2分钟前
tt完成签到,获得积分10
2分钟前
2分钟前
拼搏问薇完成签到 ,获得积分10
2分钟前
3分钟前
ZYP发布了新的文献求助10
3分钟前
3分钟前
doublenine18完成签到,获得积分10
3分钟前
科研通AI6应助doublenine18采纳,获得10
3分钟前
3分钟前
无极微光应助科研通管家采纳,获得20
3分钟前
3分钟前
慕青应助Xiu采纳,获得10
4分钟前
HYQ完成签到 ,获得积分10
4分钟前
4分钟前
Xiu发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639753
求助须知:如何正确求助?哪些是违规求助? 4750316
关于积分的说明 15007305
捐赠科研通 4797968
什么是DOI,文献DOI怎么找? 2564061
邀请新用户注册赠送积分活动 1522938
关于科研通互助平台的介绍 1482591