亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross-Domain Few-Shot Learning Based on Graph Convolution Contrast for Hyperspectral Image Classification

计算机科学 人工智能 特征提取 分类器(UML) 模式识别(心理学) 卷积(计算机科学) 图形 特征(语言学) 对比度(视觉) 高光谱成像 上下文图像分类 图像(数学) 理论计算机科学 人工神经网络 语言学 哲学
作者
Zhen Ye,Jie Wang,Tao Sun,Jinxin Zhang,Wei Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:7
标识
DOI:10.1109/tgrs.2024.3352093
摘要

Training a deep-learning classifier notoriously requires hundreds of labeled samples at least. Many practical hyperspectral image (HSI) scenarios suffer from a substantial cost associated with obtaining a number of labeled samples. Few-shot learning (FSL), which can realize accurate classification with prior knowledge and limited supervisory experience, has demonstrated superior performance in the HSI classification. However, previous few-shot classification algorithms assume that the training and testing data are distributed in the same domains, which is a stringent assumption in realistic applications. To alleviate this limitation, we propose a cross-domain FSL based on graph convolution contrast (GCC-FSL). The proposed method leverages cross-domain learning to acquire transferable knowledge from the source domain for classifying samples in the target domain. Specifically, a positive and negative pairs module is designed for constructing positive and negative pairs by matching the class prototypes of the target domain with those of the source domain, which aligns the data distribution of the source and target domains. In addition, a graph convolution contrast (GCC) module is proposed for extracting global graph-structure information of HSI to improve the ability of feature expression and constructing a graph-contrast loss to solve a domain-shift problem. Finally, a multiscale feature extraction network is designed to expand convolutional receptive fields through feature reuse and increase information interaction for fine-grained feature extraction. The experimental results demonstrate the improved performance for the proposed FSL framework relative to both state-of-the-art convolutional neural network (CNN)-based methods as well as other few-shot techniques. The source code of this method can be found at https://github.com/JieW-ww/GCC-FSL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助恩對采纳,获得10
24秒前
星辰大海应助dengxu采纳,获得10
34秒前
MchemG应助科研通管家采纳,获得10
38秒前
情怀应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
小马甲应助科研通管家采纳,获得10
39秒前
MchemG应助科研通管家采纳,获得10
39秒前
MchemG应助科研通管家采纳,获得10
39秒前
早晚完成签到 ,获得积分10
40秒前
42秒前
45秒前
恩對发布了新的文献求助10
46秒前
dengxu发布了新的文献求助10
51秒前
恩對完成签到,获得积分10
53秒前
共享精神应助就_爱_呀采纳,获得10
55秒前
科研通AI5应助就_爱_呀采纳,获得10
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Oracle应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
科研通AI5应助橙子采纳,获得10
2分钟前
3分钟前
3分钟前
橙子发布了新的文献求助10
3分钟前
4分钟前
神勇朝雪完成签到,获得积分10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
乐正怡完成签到 ,获得积分0
5分钟前
5分钟前
就_爱_呀发布了新的文献求助10
5分钟前
小蚂蚁完成签到 ,获得积分10
5分钟前
JamesPei应助龙卡烧烤店采纳,获得10
6分钟前
6分钟前
就_爱_呀发布了新的文献求助10
6分钟前
胜胜糖完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674431
求助须知:如何正确求助?哪些是违规求助? 3229731
关于积分的说明 9786993
捐赠科研通 2940242
什么是DOI,文献DOI怎么找? 1611830
邀请新用户注册赠送积分活动 761043
科研通“疑难数据库(出版商)”最低求助积分说明 736427