亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Smart EV Charging with Context-Awareness: Enhancing Resource Utilization via Deep Reinforcement Learning

强化学习 计算机科学 背景(考古学) 智能电网 高效能源利用 网格 分布式计算 实时计算 人工智能 工程类 古生物学 几何学 数学 电气工程 生物
作者
Muddsair Sharif,Hüseyin Şeker
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 7009-7027 被引量:1
标识
DOI:10.1109/access.2024.3351360
摘要

The widespread adoption of electric vehicles (EVs) has introduced new challenges for stakeholders ranging from grid operators to EV owners. A critical challenge is to develop an effective and economical strategy for managing EV charging while considering the diverse objectives of all involved parties. In this study, we propose a context-aware EV smart charging system that leverages deep reinforcement learning (DRL) to accommodate the unique requirements and goals of participants. Our DRL-based approach dynamically adapts to changing contextual factors such as time of day, location, and weather to optimize charging decisions in real time. By striking a balance between charging cost, grid load reduction, fleet operator preferences, and charging station energy efficiency, the system offers EV owners a seamless and cost-efficient charging experience. Through simulations, we evaluate the efficiency of our proposed Deep Q-Network (DQN) system by comparing it with other distinct DRL methods: Proximal Policy Optimization (PPO), synchronous Advantage Actor-Critic (A3C), and Deep Deterministic Policy Gradient (DDPG). Notably, our proposed methodology, DQN, demonstrated superior computational performance compared to the others. Our results reveal that the proposed system achieves a remarkable, approximately 18% enhancement in energy efficiency compared to traditional methods. Moreover, it demonstrates about a 12% increase in cost-effectiveness for EV owners, effectively reducing grid strain by 20% and curbing CO2 emissions by 10% due to the utilization of natural energy sources. The system’s success lies in its ability to facilitate sequential decision-making, decipher intricate data patterns, and adapt to dynamic contexts. Consequently, the proposed system not only meets the efficiency and optimization requirements of fleet operators and charging station maintainers but also exemplifies a promising stride toward sustainable and balanced EV charging management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
迅速友容发布了新的文献求助10
21秒前
小蘑菇应助追寻的南风采纳,获得10
1分钟前
所所应助coco采纳,获得10
1分钟前
英姑应助aiid采纳,获得10
1分钟前
1分钟前
史前巨怪完成签到,获得积分10
1分钟前
uss完成签到,获得积分10
1分钟前
1分钟前
2分钟前
NINI完成签到 ,获得积分20
2分钟前
2分钟前
coco发布了新的文献求助10
3分钟前
3分钟前
3分钟前
开朗小饼干完成签到,获得积分10
3分钟前
从容芮应助Komolika采纳,获得600
3分钟前
糖伯虎完成签到 ,获得积分10
3分钟前
coco发布了新的文献求助10
3分钟前
3分钟前
3分钟前
淡然的书本完成签到,获得积分10
4分钟前
充电宝应助淡然的书本采纳,获得10
4分钟前
你要学好完成签到 ,获得积分10
4分钟前
4分钟前
阳阿儿发布了新的文献求助10
4分钟前
coco发布了新的文献求助30
4分钟前
4分钟前
迅速友容发布了新的文献求助10
4分钟前
阳阿儿完成签到,获得积分10
4分钟前
LYL完成签到,获得积分10
5分钟前
5分钟前
慕青应助科研通管家采纳,获得10
5分钟前
帅哥发布了新的文献求助10
5分钟前
5分钟前
5分钟前
樱桃猴子应助迅速友容采纳,获得10
5分钟前
Yililusiours完成签到,获得积分10
5分钟前
8R60d8应助LouieHuang采纳,获得10
5分钟前
8R60d8应助LouieHuang采纳,获得10
6分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154982
求助须知:如何正确求助?哪些是违规求助? 2805697
关于积分的说明 7865657
捐赠科研通 2463927
什么是DOI,文献DOI怎么找? 1311677
科研通“疑难数据库(出版商)”最低求助积分说明 629655
版权声明 601853