A Split-Gate Power MOSFET Obtaining Ultra-Wide SOA Based on Time-Shared and Partitioned Conduction Gate Control

MOSFET 电气工程 计算机科学 拓扑(电路) 晶体管 工程类 电压
作者
Tuanzhuang Wu,Jiaxing Wei,Xin Tong,Tianyi He,Sheng Li,Long Zhang,Siyang Liu,Desheng Ding,Weifeng Sun
出处
期刊:IEEE Journal of Emerging and Selected Topics in Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:12 (2): 1834-1846 被引量:3
标识
DOI:10.1109/jestpe.2024.3350575
摘要

Power MOSFETs are typically used as switches in the soft-start circuit of hot-swap systems, especially the split-gate trench MOSFETs (SGT-MOS) which has ultralow ON-state resistance ( ${R}_{\mathrm{\scriptscriptstyle ON}}$ ). Whereas the safe operating area (SOA) of SGT-MOS collapses as power density increases. So far, the investigation to balance the ${R}_{\mathrm{\scriptscriptstyle ON}}$ and SOA of the SGT-MOS mainly focuses on the improvement of the device structure and packaging. The problem is not yet fundamentally solved. In this article, the collapse of the SOA of power MOSFETs under linear mode operation has been minutely studied. The mechanism of thermal runaway and the effect of the $ {R}_{\mathrm{\scriptscriptstyle ON}}$ of MOSFET on its SOA have been revealed as well. It is noted that the degradation of the linear mode operating capacity of power MOSFETs is the root cause for the narrowing of the SOA, which is reflected in the shrinkage of the power dissipation limit. The analytical model of local temperature rises and device temperature coefficient (TC) is established. Reducing the current TC of the power MOSFETs is the key to improve the thermal stability and to broaden the SOA. On the basis of researched results, an intelligent power MOSFET architecture with ultra-wide SOA is proposed. The innovative power device surmounts the trade-off between the SOA and ${R}_{\mathrm{\scriptscriptstyle ON}}$ . As a result, the linear capacity of the power MOSFET proposed is high enough to compare that of the latest commercial linear MOSFET product from Infineon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Charley发布了新的文献求助10
刚刚
2秒前
wangyr11发布了新的文献求助10
2秒前
千寻完成签到 ,获得积分10
2秒前
科研通AI5应助Suki采纳,获得10
3秒前
4秒前
吃猫的鱼发布了新的文献求助10
5秒前
TX完成签到,获得积分10
6秒前
开心不愁发布了新的文献求助10
7秒前
良辰应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
suibianba应助科研通管家采纳,获得10
8秒前
良辰应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
良辰应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
良辰应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
dll发布了新的文献求助10
9秒前
猪猪hero应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
suibianba应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
良辰应助科研通管家采纳,获得10
10秒前
良辰应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
良辰应助科研通管家采纳,获得10
10秒前
魔幻的盼芙完成签到 ,获得积分10
13秒前
从容安珊完成签到,获得积分10
13秒前
英姑应助望北采纳,获得30
13秒前
yjihn发布了新的文献求助10
14秒前
14秒前
16秒前
17秒前
18秒前
18秒前
科目三应助开心不愁采纳,获得10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674041
求助须知:如何正确求助?哪些是违规求助? 3229463
关于积分的说明 9785742
捐赠科研通 2939976
什么是DOI,文献DOI怎么找? 1611554
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736344