Electronic structure engineering of electrocatalyst for efficient urea oxidation reaction

电催化剂 材料科学 电解 催化作用 电化学 电子结构 电子转移 纳米技术 物理化学 电极 有机化学 计算化学 化学 电解质
作者
Akash S. Rasal,Hao Ming Chen,Wen‐Yueh Yu
出处
期刊:Nano Energy [Elsevier]
卷期号:121: 109183-109183 被引量:3
标识
DOI:10.1016/j.nanoen.2023.109183
摘要

Urea electrolysis is a viable approach to produce hydrogen energy, while the urea oxidation reaction (UOR) presents major obstacles due to its low conversion efficiency and high kinetic barriers. To achieve the full potential of UOR, engineering the electronic structure of UOR electrocatalysts is expected not only to realize high-valence active centers but also to improve the electrical conductivity, thus boosting the overall catalytic efficacies. Furthermore, electronic structure engineering holds promise for facilitating the interface-driven electron transfer, fine-tuning the binding strength of essential reaction intermediates (e.g., NH*, and CO*), and enabling the COO* desorption step in the reaction pathway. In order to construct electronic modulation of electrocatalysts, it is crucial to comprehend how electronic structure engineering impacts UOR activity and what guidelines should be followed. In this review, we begin with an overview of the key differences between water electrolysis and urea electrolysis, then go over the activity parameters used to evaluate the catalytic efficacies that could be expected to help readers to gain a fundamental understanding of this field. This will be followed by outlining the first principles and key parameters of catalyst electronic structure engineering for the benefit of the reader. Furthermore, detailed notes were provided on the potential of electronic structure-engineered catalysts to speed up the UOR kinetics with a focus on interface engineering, doping engineering, defect engineering, phase engineering, and strain engineering. Finally, we discuss the difficulties and opportunities that lie beneath the prospect of developing electrocatalysts for UOR that are both efficient and effective in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
BUBBLE发布了新的文献求助10
3秒前
红豆醉发布了新的文献求助10
4秒前
淼鑫关注了科研通微信公众号
5秒前
芝芝莓莓完成签到,获得积分10
5秒前
可问春风完成签到,获得积分10
5秒前
赘婿应助黙宇循光采纳,获得10
6秒前
勤奋的世德关注了科研通微信公众号
6秒前
7秒前
10秒前
叹千泠完成签到,获得积分10
11秒前
AA电器维修老王完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
fanling888发布了新的文献求助50
14秒前
情怀应助鲸鱼采纳,获得10
15秒前
floyd完成签到,获得积分20
15秒前
英俊的铭应助BUBBLE采纳,获得10
16秒前
21完成签到 ,获得积分10
16秒前
16秒前
韵寒完成签到,获得积分10
16秒前
TAboo发布了新的文献求助50
17秒前
可耐的Gamma完成签到,获得积分10
18秒前
复杂宇宙发布了新的文献求助20
18秒前
xiaoqin发布了新的文献求助10
18秒前
薰硝壤应助动如脱兔采纳,获得10
19秒前
19秒前
月夕完成签到,获得积分10
20秒前
小云完成签到,获得积分10
20秒前
普外科阿曾完成签到,获得积分10
21秒前
1234发布了新的文献求助10
21秒前
21秒前
weiwei发布了新的文献求助10
22秒前
22秒前
22秒前
丘比特应助生菜采纳,获得10
24秒前
青易发布了新的文献求助10
25秒前
高分求助中
Handbook of Fuel Cells, 6 Volume Set 1666
求助这个网站里的问题集 1000
Floxuridine; Third Edition 1000
Tracking and Data Fusion: A Handbook of Algorithms 1000
La décision juridictionnelle 800
Rechtsphilosophie und Rechtstheorie 800
Academic entitlement: Adapting the equity preference questionnaire for a university setting 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 冶金 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2866192
求助须知:如何正确求助?哪些是违规求助? 2473191
关于积分的说明 6705121
捐赠科研通 2162012
什么是DOI,文献DOI怎么找? 1148511
版权声明 585475
科研通“疑难数据库(出版商)”最低求助积分说明 564088