清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel interval-valued carbon price analysis and forecasting system based on multi-objective ensemble strategy for carbon trading market

碳价格 计算机科学 区间(图论) 预处理器 计量经济学 数学优化 人工智能 数学 温室气体 生态学 生物 组合数学
作者
Hao Yan,Xiaodi Wang,Jianzhou Wang,Wendong Yang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:244: 122912-122912 被引量:16
标识
DOI:10.1016/j.eswa.2023.122912
摘要

Accurate forecasting of carbon price is crucial for the efficient management and stable operation of carbon markets. Earlier studies are limited to point and interval forecasts based on single-valued carbon price and lack analysis and forecasting based on interval-valued carbon price. Therefore, this study proposes a novel analysis and forecasting system from a new perspective of interval-valued carbon price. Specifically, a carbon price analysis sub-system is developed to investigate the directional causal relationship between the upper and lower bounds of the interval-valued carbon price series. The carbon price forecasting sub-system is developed by designing a data preprocessing module, sub-model forecasting module, and multi-objective ensemble module. The data preprocessing module adopts the decomposition algorithm to preprocess the interval-valued carbon price. Then the sub-model forecasting module utilizes multiple neural network models to predict the highest and lowest prices. Finally, the multi-objective ensemble module adopts a non-linear and multi-objective ensemble strategy to ensemble the forecasting results of the sub-models. It can be found that the consideration of both upper and lower bounds of interval-valued carbon price within the range leads to higher prediction accuracy for the highest or lowest price predictions. Additionally, the ensemble model can effectively leverage the strengths of individual sub-models, resulting in more precise and stable predictions. The average absolute percentage errors for the highest and lowest price predictions in the Hubei and Guangzhou carbon trading markets are 0.8574%, 1.2738%, 0.9774%, and 1.8217% respectively, vividly demonstrating the effectiveness of the proposed system in carbon price prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
XD824发布了新的文献求助10
4秒前
优雅的WAN完成签到 ,获得积分10
16秒前
17秒前
热情的橙汁完成签到,获得积分10
21秒前
23秒前
个性的紫菜应助hugeyoung采纳,获得30
23秒前
靓丽宛亦完成签到 ,获得积分10
28秒前
hugeyoung完成签到,获得积分10
32秒前
34秒前
萝卜猪完成签到,获得积分10
38秒前
42秒前
43秒前
Wen完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
LMW应助lee采纳,获得10
1分钟前
XD824发布了新的文献求助10
1分钟前
sfjww发布了新的文献求助30
1分钟前
中恐完成签到,获得积分0
1分钟前
2分钟前
xun应助lee采纳,获得30
2分钟前
浚稚完成签到 ,获得积分10
2分钟前
2分钟前
Ava应助如沐春风采纳,获得10
2分钟前
ffff完成签到,获得积分10
2分钟前
2分钟前
2分钟前
如沐春风完成签到,获得积分10
2分钟前
2分钟前
如沐春风发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
LMW应助lee采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596743
求助须知:如何正确求助?哪些是违规求助? 4008546
关于积分的说明 12409321
捐赠科研通 3687625
什么是DOI,文献DOI怎么找? 2032568
邀请新用户注册赠送积分活动 1065806
科研通“疑难数据库(出版商)”最低求助积分说明 951098