A novel interval-valued carbon price analysis and forecasting system based on multi-objective ensemble strategy for carbon trading market

碳价格 计算机科学 区间(图论) 预处理器 计量经济学 人工智能 数学 温室气体 生态学 生物 组合数学
作者
Hao Yan,Xiaodi Wang,Jianzhou Wang,Wendong Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:244: 122912-122912 被引量:6
标识
DOI:10.1016/j.eswa.2023.122912
摘要

Accurate forecasting of carbon price is crucial for the efficient management and stable operation of carbon markets. Earlier studies are limited to point and interval forecasts based on single-valued carbon price and lack analysis and forecasting based on interval-valued carbon price. Therefore, this study proposes a novel analysis and forecasting system from a new perspective of interval-valued carbon price. Specifically, a carbon price analysis sub-system is developed to investigate the directional causal relationship between the upper and lower bounds of the interval-valued carbon price series. The carbon price forecasting sub-system is developed by designing a data preprocessing module, sub-model forecasting module, and multi-objective ensemble module. The data preprocessing module adopts the decomposition algorithm to preprocess the interval-valued carbon price. Then the sub-model forecasting module utilizes multiple neural network models to predict the highest and lowest prices. Finally, the multi-objective ensemble module adopts a non-linear and multi-objective ensemble strategy to ensemble the forecasting results of the sub-models. It can be found that the consideration of both upper and lower bounds of interval-valued carbon price within the range leads to higher prediction accuracy for the highest or lowest price predictions. Additionally, the ensemble model can effectively leverage the strengths of individual sub-models, resulting in more precise and stable predictions. The average absolute percentage errors for the highest and lowest price predictions in the Hubei and Guangzhou carbon trading markets are 0.8574%, 1.2738%, 0.9774%, and 1.8217% respectively, vividly demonstrating the effectiveness of the proposed system in carbon price prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luo发布了新的文献求助10
刚刚
1秒前
酷小裤完成签到,获得积分10
1秒前
1秒前
00发布了新的文献求助10
1秒前
Jasper应助全球一亿基佬采纳,获得10
1秒前
酷波er应助lllym采纳,获得10
1秒前
2秒前
开心超人完成签到,获得积分10
2秒前
十点睡六点起完成签到,获得积分10
2秒前
2秒前
gaogao完成签到,获得积分10
4秒前
4秒前
4秒前
柒七发布了新的文献求助10
4秒前
123abc完成签到,获得积分20
4秒前
5秒前
小鳄鱼一只应助董石美采纳,获得10
5秒前
clearwind完成签到,获得积分10
5秒前
5秒前
6秒前
泯珉发布了新的文献求助20
8秒前
8秒前
甜甜玫瑰应助anan采纳,获得10
8秒前
路人甲完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
馅饼完成签到,获得积分10
9秒前
L77发布了新的文献求助10
9秒前
Sean完成签到,获得积分10
9秒前
9秒前
9秒前
妮妮发布了新的文献求助10
9秒前
江北小赵完成签到,获得积分10
9秒前
deep blue完成签到,获得积分10
10秒前
hyw发布了新的文献求助10
10秒前
Young完成签到,获得积分10
10秒前
10秒前
Sunhignway完成签到,获得积分10
10秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
【本贴是提醒信息,请勿应助】请在求助之前详细阅读求助说明!!!! 20000
Evolution 5000
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
La Chine révolutionnaire d'aujourd'hui / Van Min, Kang Hsin 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3044087
求助须知:如何正确求助?哪些是违规求助? 2701275
关于积分的说明 7383057
捐赠科研通 2345240
什么是DOI,文献DOI怎么找? 1241363
科研通“疑难数据库(出版商)”最低求助积分说明 603809
版权声明 595493