A novel interval-valued carbon price analysis and forecasting system based on multi-objective ensemble strategy for carbon trading market

碳价格 计算机科学 区间(图论) 预处理器 计量经济学 数学优化 人工智能 数学 温室气体 生态学 生物 组合数学
作者
Hao Yan,Xiaodi Wang,Jianzhou Wang,Wendong Yang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:244: 122912-122912 被引量:16
标识
DOI:10.1016/j.eswa.2023.122912
摘要

Accurate forecasting of carbon price is crucial for the efficient management and stable operation of carbon markets. Earlier studies are limited to point and interval forecasts based on single-valued carbon price and lack analysis and forecasting based on interval-valued carbon price. Therefore, this study proposes a novel analysis and forecasting system from a new perspective of interval-valued carbon price. Specifically, a carbon price analysis sub-system is developed to investigate the directional causal relationship between the upper and lower bounds of the interval-valued carbon price series. The carbon price forecasting sub-system is developed by designing a data preprocessing module, sub-model forecasting module, and multi-objective ensemble module. The data preprocessing module adopts the decomposition algorithm to preprocess the interval-valued carbon price. Then the sub-model forecasting module utilizes multiple neural network models to predict the highest and lowest prices. Finally, the multi-objective ensemble module adopts a non-linear and multi-objective ensemble strategy to ensemble the forecasting results of the sub-models. It can be found that the consideration of both upper and lower bounds of interval-valued carbon price within the range leads to higher prediction accuracy for the highest or lowest price predictions. Additionally, the ensemble model can effectively leverage the strengths of individual sub-models, resulting in more precise and stable predictions. The average absolute percentage errors for the highest and lowest price predictions in the Hubei and Guangzhou carbon trading markets are 0.8574%, 1.2738%, 0.9774%, and 1.8217% respectively, vividly demonstrating the effectiveness of the proposed system in carbon price prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
格物致知发布了新的文献求助10
1秒前
动听锦程发布了新的文献求助10
1秒前
2秒前
wdy111应助左丘以云采纳,获得20
2秒前
2秒前
2秒前
糊辣鱼完成签到 ,获得积分10
3秒前
SYLH应助Ridley采纳,获得10
3秒前
4秒前
TWOTP完成签到,获得积分10
4秒前
Asystasia7完成签到,获得积分10
4秒前
4秒前
CATH发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
小蘑菇应助傻傻的夜柳采纳,获得30
6秒前
cxccx发布了新的文献求助10
6秒前
poker84完成签到,获得积分10
6秒前
7秒前
LLL完成签到,获得积分10
7秒前
Enzo完成签到,获得积分10
7秒前
充电宝应助tracer采纳,获得10
7秒前
倪斯芮完成签到 ,获得积分10
8秒前
tzj完成签到,获得积分10
9秒前
9秒前
9秒前
bluesmile完成签到,获得积分10
10秒前
怕孤单的羊完成签到,获得积分10
10秒前
鸡蛋包土豆儿完成签到,获得积分10
10秒前
风吹裤裆蛋蛋凉完成签到,获得积分10
11秒前
钱小二发布了新的文献求助10
12秒前
在水一方应助动听锦程采纳,获得10
12秒前
12秒前
12秒前
13秒前
小蘑菇应助宁阿霜采纳,获得20
14秒前
tiasn发布了新的文献求助10
14秒前
dududu完成签到,获得积分10
14秒前
15秒前
15秒前
苍耳发布了新的文献求助30
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653