火星人
泥火山
火星探测计划
地质学
沉积岩
火山
火星大气层
地貌学
天体生物学
岩石学
地球化学
物理
作者
Petr Brož,Ondřej Krýza,Vojtěch Patočka,Věra Pěnkavová,Susan J. Conway,Adriano Mazzini,Ernst Hauber,Matthew Sylvest,Manish R. Patel
摘要
Abstract Subtle mounds have been discovered in the source areas of Martian kilometer‐sized flows and on top of summit areas of domes. These features have been suggested to be related to subsurface sediment mobilization, opening questions regarding their formation mechanisms. Previous studies hypothesized that they mark the position of feeder vents through which mud was brought to the surface. Two theories have been proposed: (a) ascent of more viscous mud during the late stage of eruption and (b) expansion of mud within the conduit due to the instability of water under Martian conditions. Here, we present experiments performed inside a low‐pressure chamber designed to investigate whether the volume of mud changes when exposed to a Martian atmospheric pressure. Depending on the mud viscosity, we observe a volumetric increase of up to 30% at the Martian average pressure of ∼6 mbar. The reason is that the low pressure causes instability of the water within the mud, leading to the bubble formation that increases the volume of the mixture. This mechanism bears resemblance to the volumetric changes associated with the degassing of terrestrial lava or mud volcano eruptions caused by a rapid pressure drop. We conclude that the mounds associated with putative Martian sedimentary volcanoes might indeed be explained by volumetric changes in the mud. We also show that mud flows on Mars and elsewhere in the Solar System could behave differently to those found on Earth because mud dynamics are affected by the formation of bubbles in response to the different atmospheric pressures.
科研通智能强力驱动
Strongly Powered by AbleSci AI