Artificial intelligence in the risk prediction models of cardiovascular disease and development of an independent validation screening tool: a systematic review

医学 人工智能 机器学习 预测建模 数据提取 风险评估 梅德林 疾病 内科学 计算机科学 计算机安全 政治学 法学
作者
Yue Cai,Yuqing Cai,Liying Tang,Yihan Wang,Mengchun Gong,Tian-Ci Jing,Huijun Li,Jesse Li‐Ling,Wei Hu,Zhihua Yin,Da-Xin Gong,Guangwei Zhang
出处
期刊:BMC Medicine [Springer Nature]
卷期号:22 (1) 被引量:19
标识
DOI:10.1186/s12916-024-03273-7
摘要

Abstract Background A comprehensive overview of artificial intelligence (AI) for cardiovascular disease (CVD) prediction and a screening tool of AI models (AI-Ms) for independent external validation are lacking. This systematic review aims to identify, describe, and appraise AI-Ms of CVD prediction in the general and special populations and develop a new independent validation score (IVS) for AI-Ms replicability evaluation. Methods PubMed, Web of Science, Embase, and IEEE library were searched up to July 2021. Data extraction and analysis were performed for the populations, distribution, predictors, algorithms, etc. The risk of bias was evaluated with the prediction risk of bias assessment tool (PROBAST). Subsequently, we designed IVS for model replicability evaluation with five steps in five items, including transparency of algorithms, performance of models, feasibility of reproduction, risk of reproduction, and clinical implication, respectively. The review is registered in PROSPERO (No. CRD42021271789). Results In 20,887 screened references, 79 articles (82.5% in 2017–2021) were included, which contained 114 datasets (67 in Europe and North America, but 0 in Africa). We identified 486 AI-Ms, of which the majority were in development ( n = 380), but none of them had undergone independent external validation. A total of 66 idiographic algorithms were found; however, 36.4% were used only once and only 39.4% over three times. A large number of different predictors (range 5–52,000, median 21) and large-span sample size (range 80–3,660,000, median 4466) were observed. All models were at high risk of bias according to PROBAST, primarily due to the incorrect use of statistical methods. IVS analysis confirmed only 10 models as “recommended”; however, 281 and 187 were “not recommended” and “warning,” respectively. Conclusion AI has led the digital revolution in the field of CVD prediction, but is still in the early stage of development as the defects of research design, report, and evaluation systems. The IVS we developed may contribute to independent external validation and the development of this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关导发布了新的文献求助10
1秒前
Oveja发布了新的文献求助10
1秒前
1秒前
Jasper应助Gardenia2001采纳,获得10
2秒前
hhhhhhh发布了新的文献求助10
2秒前
大娱乐家发布了新的文献求助10
2秒前
轨迹。发布了新的文献求助10
2秒前
caia完成签到,获得积分10
2秒前
123发布了新的文献求助10
2秒前
就好发布了新的文献求助10
3秒前
3秒前
小二郎应助YFH采纳,获得10
3秒前
5秒前
5秒前
龍行天下完成签到,获得积分10
6秒前
aaaaaab发布了新的文献求助10
6秒前
RC_Wang应助长情灵凡采纳,获得10
7秒前
尖头叉子发布了新的文献求助10
8秒前
9秒前
jiaqi发布了新的文献求助10
9秒前
Oveja发布了新的文献求助30
9秒前
GXR发布了新的文献求助10
9秒前
科研通AI2S应助啊哈采纳,获得10
10秒前
bkagyin应助就好采纳,获得10
10秒前
科研大狗完成签到,获得积分20
10秒前
龍行天下发布了新的文献求助10
11秒前
科研通AI2S应助现实的秋天采纳,获得10
12秒前
13秒前
13秒前
我去打球完成签到 ,获得积分10
13秒前
hhh关闭了hhh文献求助
13秒前
hsr_eye完成签到,获得积分10
15秒前
16秒前
科研大狗发布了新的文献求助10
16秒前
17秒前
今后应助Grape采纳,获得10
17秒前
星辰大海应助1234采纳,获得10
18秒前
18秒前
18秒前
深情安青应助大娱乐家采纳,获得10
19秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3410946
求助须知:如何正确求助?哪些是违规求助? 3014465
关于积分的说明 8863633
捐赠科研通 2701905
什么是DOI,文献DOI怎么找? 1481296
科研通“疑难数据库(出版商)”最低求助积分说明 684774
邀请新用户注册赠送积分活动 679298