Real-time visual SLAM based YOLO-Fastest for dynamic scenes

同时定位和映射 人工智能 计算机科学 计算机视觉 最小边界框 跳跃式监视 稳健性(进化) 移动机器人 机器人 图像(数学) 生物化学 化学 基因
作者
Can Gong,Ying Sun,Chunlong Zou,Bo Tao,Li Huang,Zifan Fang,Dalai Tang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056305-056305 被引量:4
标识
DOI:10.1088/1361-6501/ad2669
摘要

Abstract Within the realm of autonomous robotic navigation, simultaneous localization and mapping (SLAM) serves as a critical perception technology, drawing heightened attention in contemporary research. The traditional SLAM systems perform well in static environments, but in the real physical world, dynamic objects can destroy the static geometric constraints of the SLAM system, further limiting its practical application in the real world. In this paper, a robust dynamic RGB-D SLAM system is proposed to expand the number of static points in the scene by combining with YOLO-Fastest to ensure the effectiveness of the geometric constraints model construction, and then based on that, a new thresholding model is designed to differentiate the dynamic features in the objection bounding box, which takes advantage of the double polyline constraints and the residuals after reprojection to filter the dynamic feature points. In addition, two Gaussian models are constructed to segment the moving objects in the bounding box in the depth image to achieve the effect similar to the instance segmentation under the premise of ensuring the computational speed. In this paper, experiments are conducted on dynamic sequences provided by the TUM dataset to evaluate the performance of the proposed method, and the results show that the root mean squared error metric of the absolute trajectory error of the algorithm of this paper has at least 80% improvement compared to ORB-SLAM2. Higher robustness in dynamic environments with both high and low dynamic sequences compared to DS-SLAM and Dynaslam, and can effectively provide intelligent localization and navigation for mobile robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎忆翠完成签到,获得积分10
1秒前
左一酱完成签到 ,获得积分10
2秒前
努力努力再努力mm完成签到,获得积分10
2秒前
sl发布了新的文献求助10
2秒前
贾小闲完成签到,获得积分10
3秒前
诸岩完成签到,获得积分10
3秒前
4秒前
4秒前
qqqqq完成签到,获得积分10
5秒前
充电宝应助Passskd采纳,获得10
5秒前
6秒前
6秒前
8秒前
内向南风完成签到 ,获得积分10
10秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
顾矜应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
Maestro_S应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得30
12秒前
12秒前
高高亿先应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
12秒前
ding应助科研通管家采纳,获得10
12秒前
1sunpf完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
spf完成签到,获得积分10
13秒前
荒野风发布了新的文献求助10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029