Real-time visual SLAM based YOLO-Fastest for dynamic scenes

同时定位和映射 人工智能 计算机科学 计算机视觉 最小边界框 跳跃式监视 稳健性(进化) 移动机器人 机器人 图像(数学) 生物化学 化学 基因
作者
Can Gong,Ying Sun,Chunlong Zou,Bo Tao,Li Huang,Zifan Fang,Dalai Tang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056305-056305 被引量:4
标识
DOI:10.1088/1361-6501/ad2669
摘要

Abstract Within the realm of autonomous robotic navigation, simultaneous localization and mapping (SLAM) serves as a critical perception technology, drawing heightened attention in contemporary research. The traditional SLAM systems perform well in static environments, but in the real physical world, dynamic objects can destroy the static geometric constraints of the SLAM system, further limiting its practical application in the real world. In this paper, a robust dynamic RGB-D SLAM system is proposed to expand the number of static points in the scene by combining with YOLO-Fastest to ensure the effectiveness of the geometric constraints model construction, and then based on that, a new thresholding model is designed to differentiate the dynamic features in the objection bounding box, which takes advantage of the double polyline constraints and the residuals after reprojection to filter the dynamic feature points. In addition, two Gaussian models are constructed to segment the moving objects in the bounding box in the depth image to achieve the effect similar to the instance segmentation under the premise of ensuring the computational speed. In this paper, experiments are conducted on dynamic sequences provided by the TUM dataset to evaluate the performance of the proposed method, and the results show that the root mean squared error metric of the absolute trajectory error of the algorithm of this paper has at least 80% improvement compared to ORB-SLAM2. Higher robustness in dynamic environments with both high and low dynamic sequences compared to DS-SLAM and Dynaslam, and can effectively provide intelligent localization and navigation for mobile robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助康康星采纳,获得10
刚刚
小王同学完成签到,获得积分10
刚刚
刚刚
晓晓雪完成签到 ,获得积分10
1秒前
轻松靖仇完成签到,获得积分10
1秒前
1秒前
泡沫发布了新的文献求助10
1秒前
耳东陈发布了新的文献求助50
2秒前
飘来一朵云完成签到,获得积分10
3秒前
Mr.Su发布了新的文献求助10
3秒前
4秒前
Jayson完成签到,获得积分10
4秒前
超帅花瓣发布了新的文献求助20
4秒前
5秒前
彭于彦祖应助Robert采纳,获得30
5秒前
爱吃粑粑发布了新的文献求助10
6秒前
小唐完成签到,获得积分10
6秒前
澎鱼盐完成签到,获得积分10
7秒前
zsj3787发布了新的文献求助10
7秒前
戈笙gg完成签到,获得积分10
7秒前
酷波er应助xiguaruby采纳,获得10
8秒前
orixero应助Ilan采纳,获得10
8秒前
高木森发布了新的文献求助10
11秒前
wsw完成签到,获得积分10
11秒前
彭于晏应助o30采纳,获得10
12秒前
公冶嘉懿发布了新的文献求助10
12秒前
12秒前
Accompany完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
12完成签到 ,获得积分10
14秒前
郭郭郭完成签到,获得积分10
14秒前
dingdong258完成签到,获得积分10
14秒前
大橙子完成签到,获得积分10
15秒前
lcm完成签到,获得积分10
15秒前
汉堡包应助爱吃粑粑采纳,获得10
15秒前
16秒前
FashionBoy应助YU采纳,获得10
16秒前
花开无声完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969383
求助须知:如何正确求助?哪些是违规求助? 3514211
关于积分的说明 11172730
捐赠科研通 3249476
什么是DOI,文献DOI怎么找? 1794909
邀请新用户注册赠送积分活动 875441
科研通“疑难数据库(出版商)”最低求助积分说明 804827