Real-time visual SLAM based YOLO-Fastest for dynamic scenes

同时定位和映射 人工智能 计算机科学 计算机视觉 最小边界框 跳跃式监视 稳健性(进化) 移动机器人 机器人 图像(数学) 生物化学 基因 化学
作者
Can Gong,Ying Sun,Chunlong Zou,Bo Tao,Li Huang,Zifan Fang,Dalai Tang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056305-056305 被引量:4
标识
DOI:10.1088/1361-6501/ad2669
摘要

Abstract Within the realm of autonomous robotic navigation, simultaneous localization and mapping (SLAM) serves as a critical perception technology, drawing heightened attention in contemporary research. The traditional SLAM systems perform well in static environments, but in the real physical world, dynamic objects can destroy the static geometric constraints of the SLAM system, further limiting its practical application in the real world. In this paper, a robust dynamic RGB-D SLAM system is proposed to expand the number of static points in the scene by combining with YOLO-Fastest to ensure the effectiveness of the geometric constraints model construction, and then based on that, a new thresholding model is designed to differentiate the dynamic features in the objection bounding box, which takes advantage of the double polyline constraints and the residuals after reprojection to filter the dynamic feature points. In addition, two Gaussian models are constructed to segment the moving objects in the bounding box in the depth image to achieve the effect similar to the instance segmentation under the premise of ensuring the computational speed. In this paper, experiments are conducted on dynamic sequences provided by the TUM dataset to evaluate the performance of the proposed method, and the results show that the root mean squared error metric of the absolute trajectory error of the algorithm of this paper has at least 80% improvement compared to ORB-SLAM2. Higher robustness in dynamic environments with both high and low dynamic sequences compared to DS-SLAM and Dynaslam, and can effectively provide intelligent localization and navigation for mobile robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
1秒前
2秒前
田様应助wuweizhizhi采纳,获得10
3秒前
浮游应助hq采纳,获得10
4秒前
4秒前
爆米花应助秀丽的莹采纳,获得10
5秒前
under完成签到 ,获得积分10
5秒前
夕荀发布了新的文献求助10
6秒前
AJY完成签到,获得积分10
7秒前
8秒前
香仔啊发布了新的文献求助10
8秒前
放放发布了新的文献求助10
8秒前
Lucas应助背后寒烟采纳,获得10
10秒前
汉堡包应助芋泥波波采纳,获得10
10秒前
大锤哥发布了新的文献求助10
11秒前
零零发布了新的文献求助10
11秒前
hexiao完成签到,获得积分10
11秒前
科研通AI2S应助小小的太阳采纳,获得10
11秒前
七爷完成签到 ,获得积分10
12秒前
蓝胖砸完成签到,获得积分10
12秒前
yyyfff应助勤奋的寒风采纳,获得10
12秒前
不想起名完成签到,获得积分20
13秒前
胡佳文应助FYQ采纳,获得10
14秒前
17秒前
17秒前
英姑应助orthojiang采纳,获得10
17秒前
snow完成签到 ,获得积分10
17秒前
17秒前
科研通AI6应助秋子david采纳,获得10
17秒前
大锤哥完成签到,获得积分0
18秒前
5km完成签到,获得积分10
18秒前
晚风完成签到,获得积分10
19秒前
dkm完成签到,获得积分10
19秒前
年肖发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643787
求助须知:如何正确求助?哪些是违规求助? 4761967
关于积分的说明 15022294
捐赠科研通 4802012
什么是DOI,文献DOI怎么找? 2567269
邀请新用户注册赠送积分活动 1524908
关于科研通互助平台的介绍 1484455