Real-time visual SLAM based YOLO-Fastest for dynamic scenes

同时定位和映射 人工智能 计算机科学 计算机视觉 最小边界框 跳跃式监视 稳健性(进化) 移动机器人 机器人 图像(数学) 生物化学 化学 基因
作者
Can Gong,Ying Sun,Chunlong Zou,Bo Tao,Li Huang,Zifan Fang,Dalai Tang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056305-056305 被引量:4
标识
DOI:10.1088/1361-6501/ad2669
摘要

Abstract Within the realm of autonomous robotic navigation, simultaneous localization and mapping (SLAM) serves as a critical perception technology, drawing heightened attention in contemporary research. The traditional SLAM systems perform well in static environments, but in the real physical world, dynamic objects can destroy the static geometric constraints of the SLAM system, further limiting its practical application in the real world. In this paper, a robust dynamic RGB-D SLAM system is proposed to expand the number of static points in the scene by combining with YOLO-Fastest to ensure the effectiveness of the geometric constraints model construction, and then based on that, a new thresholding model is designed to differentiate the dynamic features in the objection bounding box, which takes advantage of the double polyline constraints and the residuals after reprojection to filter the dynamic feature points. In addition, two Gaussian models are constructed to segment the moving objects in the bounding box in the depth image to achieve the effect similar to the instance segmentation under the premise of ensuring the computational speed. In this paper, experiments are conducted on dynamic sequences provided by the TUM dataset to evaluate the performance of the proposed method, and the results show that the root mean squared error metric of the absolute trajectory error of the algorithm of this paper has at least 80% improvement compared to ORB-SLAM2. Higher robustness in dynamic environments with both high and low dynamic sequences compared to DS-SLAM and Dynaslam, and can effectively provide intelligent localization and navigation for mobile robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
yiheng发布了新的文献求助10
4秒前
大佬猪关注了科研通微信公众号
4秒前
名侦探柯基完成签到,获得积分10
5秒前
kerr发布了新的文献求助10
5秒前
7秒前
顺利的妖妖完成签到 ,获得积分10
8秒前
9秒前
Gonna发布了新的文献求助10
9秒前
桑榆发布了新的文献求助10
9秒前
QiongYin_123完成签到 ,获得积分10
10秒前
弹弹弹完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
热心果汁完成签到,获得积分10
11秒前
11秒前
水木子尔发布了新的文献求助10
11秒前
科研通AI6应助一一采纳,获得10
12秒前
FashionBoy应助聪慧雪糕采纳,获得10
13秒前
领导范儿应助txy采纳,获得10
14秒前
zzxc发布了新的文献求助10
16秒前
17秒前
真的别闹了完成签到,获得积分10
17秒前
18秒前
18秒前
无极微光应助Nz96ForU采纳,获得20
19秒前
天天快乐应助zzxc采纳,获得10
20秒前
yangsi完成签到 ,获得积分10
21秒前
22秒前
布偶猫完成签到,获得积分20
22秒前
聪慧雪糕发布了新的文献求助10
22秒前
23秒前
23秒前
陌瑾完成签到,获得积分10
24秒前
柳觅夏完成签到,获得积分10
24秒前
24秒前
聪明伊完成签到,获得积分10
26秒前
zzxc完成签到,获得积分10
27秒前
Oreki完成签到,获得积分10
27秒前
cx完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540081
求助须知:如何正确求助?哪些是违规求助? 4626714
关于积分的说明 14600589
捐赠科研通 4567663
什么是DOI,文献DOI怎么找? 2504126
邀请新用户注册赠送积分活动 1481862
关于科研通互助平台的介绍 1453482