亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Determination of electrical and thermal conductivities of n- and p-type thermoelectric materials by prediction iteration machine learning method

热电效应 热扩散率 人工神经网络 热的 材料科学 类型(生物学) 热电材料 热导率 算法 数学 分析化学(期刊) 机器学习 热力学 计算机科学 化学 物理 色谱法 生物 生态学
作者
Hasan Tiryaki,Aminu Yusuf,Sedat Ballıkaya
出处
期刊:Energy [Elsevier]
卷期号:292: 130597-130597 被引量:4
标识
DOI:10.1016/j.energy.2024.130597
摘要

Synthesising a novel high-performance thermoelectric (TE) material is time-consuming because different compositions of the chemical elements are usually varied using a trial-and-error approach. Moreover, the characterisation of TE materials requires both complex and expensive equipment; these measuring devices often fail during operation. Machine learning (ML) models can be used to accurately predict the properties of a novel composition, saving time as well as the cost of the material and equipment. In this study, two different prediction scenarios have been demonstrated, one for n-type with the general formula BixBayBzYbtTe3, and another for p-type with the general formula SbxBiyBazBtYbwTe3. From the experimental data of the above-mentioned n- and p-type compounds, transport properties of n-type Bi2-xTe3 and p-type Sb1.5Bi0.5-xTe3, where x ranges from 0 to 0.5, involving content variations of Ba, B, and Yb, are predicted. Case 1 deals with the prediction of resistivity and Seebeck values, while case 2 predicts the heat capacity (Cp) and thermal diffusivity values of the n- and p-type TE materials. Herein, different compositions of n-type BixBayBzYbtTe3 and p-type SbxBiyBazBtYbwTe3 are synthesised, and the experimental data are fed to 26 ML models. After training all the ML models, an Artificial Neural Networks (ANN) ML model with the highest R2 values of 0.9943 and 0.9995 in cases 1 and 2, respectively, is found to outperform the other models. The prediction iteration method is applied to the ANN to predict the transport properties of the p-type Sb1.5Bi0.2Ba0.3Te3 and n-type Bi1.9Ba0.1Te3. The accuracy of the prediction iteration method increases with the number of iterations. At the end of the 100th iteration, the prediction error of the ANN model in case 1 is as low as 7%, while it is 9% in case 2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
兰兰不懒发布了新的文献求助10
10秒前
赘婿应助兰兰不懒采纳,获得10
22秒前
Magali发布了新的文献求助80
26秒前
玉灵子发布了新的文献求助10
54秒前
上官若男应助玉灵子采纳,获得10
1分钟前
无花果应助zizideng采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
zizideng发布了新的文献求助10
1分钟前
zizideng完成签到,获得积分10
1分钟前
h0jian09完成签到,获得积分10
2分钟前
爆米花应助zhangxiaoqing采纳,获得10
2分钟前
小二郎应助达西苏采纳,获得10
2分钟前
2分钟前
笑傲完成签到,获得积分10
3分钟前
3分钟前
3分钟前
zhangxiaoqing发布了新的文献求助10
3分钟前
3分钟前
达西苏发布了新的文献求助10
3分钟前
达西苏完成签到,获得积分10
3分钟前
激动的似狮完成签到,获得积分0
4分钟前
量子星尘发布了新的文献求助10
4分钟前
小青椒应助霸气面包采纳,获得10
4分钟前
pups发布了新的文献求助10
4分钟前
4分钟前
wmm完成签到,获得积分10
4分钟前
Jasper应助pups采纳,获得20
5分钟前
Wei发布了新的文献求助20
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
不如看海完成签到 ,获得积分10
5分钟前
orixero应助科研通管家采纳,获得10
5分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
5分钟前
科研通AI6应助信陵君无忌采纳,获得10
5分钟前
原子超人完成签到,获得积分10
6分钟前
wanci应助ma采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671275
求助须知:如何正确求助?哪些是违规求助? 4913655
关于积分的说明 15134379
捐赠科研通 4830066
什么是DOI,文献DOI怎么找? 2586738
邀请新用户注册赠送积分活动 1540332
关于科研通互助平台的介绍 1498523