Determination of electrical and thermal conductivities of n- and p-type thermoelectric materials by prediction iteration machine learning method

热电效应 热扩散率 人工神经网络 热的 材料科学 类型(生物学) 热电材料 热导率 算法 数学 分析化学(期刊) 机器学习 热力学 计算机科学 化学 物理 色谱法 生态学 生物
作者
Hasan Tiryaki,Aminu Yusuf,Sedat Ballıkaya
出处
期刊:Energy [Elsevier]
卷期号:292: 130597-130597 被引量:4
标识
DOI:10.1016/j.energy.2024.130597
摘要

Synthesising a novel high-performance thermoelectric (TE) material is time-consuming because different compositions of the chemical elements are usually varied using a trial-and-error approach. Moreover, the characterisation of TE materials requires both complex and expensive equipment; these measuring devices often fail during operation. Machine learning (ML) models can be used to accurately predict the properties of a novel composition, saving time as well as the cost of the material and equipment. In this study, two different prediction scenarios have been demonstrated, one for n-type with the general formula BixBayBzYbtTe3, and another for p-type with the general formula SbxBiyBazBtYbwTe3. From the experimental data of the above-mentioned n- and p-type compounds, transport properties of n-type Bi2-xTe3 and p-type Sb1.5Bi0.5-xTe3, where x ranges from 0 to 0.5, involving content variations of Ba, B, and Yb, are predicted. Case 1 deals with the prediction of resistivity and Seebeck values, while case 2 predicts the heat capacity (Cp) and thermal diffusivity values of the n- and p-type TE materials. Herein, different compositions of n-type BixBayBzYbtTe3 and p-type SbxBiyBazBtYbwTe3 are synthesised, and the experimental data are fed to 26 ML models. After training all the ML models, an Artificial Neural Networks (ANN) ML model with the highest R2 values of 0.9943 and 0.9995 in cases 1 and 2, respectively, is found to outperform the other models. The prediction iteration method is applied to the ANN to predict the transport properties of the p-type Sb1.5Bi0.2Ba0.3Te3 and n-type Bi1.9Ba0.1Te3. The accuracy of the prediction iteration method increases with the number of iterations. At the end of the 100th iteration, the prediction error of the ANN model in case 1 is as low as 7%, while it is 9% in case 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
naych完成签到,获得积分10
2秒前
xxfsx应助清绘采纳,获得20
2秒前
2秒前
谨慎朝雪发布了新的文献求助10
3秒前
3秒前
好旺发布了新的文献求助10
3秒前
小西发布了新的文献求助10
3秒前
3秒前
风中冰香应助犹豫雅寒采纳,获得10
4秒前
天天快乐应助ellen采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
米丫丫米完成签到,获得积分20
6秒前
隐形听双完成签到 ,获得积分10
7秒前
7秒前
8秒前
haha完成签到 ,获得积分10
8秒前
长安完成签到 ,获得积分10
8秒前
Lucas应助刘艳林采纳,获得10
8秒前
wwwwpy发布了新的文献求助10
8秒前
倪好完成签到,获得积分10
9秒前
党阳阳完成签到,获得积分10
10秒前
子小孙发布了新的文献求助10
10秒前
ly1完成签到 ,获得积分10
10秒前
11秒前
11秒前
Onism发布了新的文献求助10
11秒前
Yy完成签到,获得积分10
11秒前
浮游应助Harden采纳,获得10
11秒前
范冰冰完成签到,获得积分10
12秒前
coldzer0完成签到,获得积分10
12秒前
黄帅比完成签到,获得积分10
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
ding应助张兰兰采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430372
求助须知:如何正确求助?哪些是违规求助? 4543585
关于积分的说明 14188041
捐赠科研通 4461764
什么是DOI,文献DOI怎么找? 2446288
邀请新用户注册赠送积分活动 1437689
关于科研通互助平台的介绍 1414458