Determination of electrical and thermal conductivities of n- and p-type thermoelectric materials by prediction iteration machine learning method

热电效应 热扩散率 人工神经网络 热的 材料科学 类型(生物学) 热电材料 热导率 算法 数学 分析化学(期刊) 机器学习 热力学 计算机科学 化学 物理 色谱法 生态学 生物
作者
Hasan Tiryaki,Aminu Yusuf,Sedat Ballıkaya
出处
期刊:Energy [Elsevier BV]
卷期号:292: 130597-130597 被引量:4
标识
DOI:10.1016/j.energy.2024.130597
摘要

Synthesising a novel high-performance thermoelectric (TE) material is time-consuming because different compositions of the chemical elements are usually varied using a trial-and-error approach. Moreover, the characterisation of TE materials requires both complex and expensive equipment; these measuring devices often fail during operation. Machine learning (ML) models can be used to accurately predict the properties of a novel composition, saving time as well as the cost of the material and equipment. In this study, two different prediction scenarios have been demonstrated, one for n-type with the general formula BixBayBzYbtTe3, and another for p-type with the general formula SbxBiyBazBtYbwTe3. From the experimental data of the above-mentioned n- and p-type compounds, transport properties of n-type Bi2-xTe3 and p-type Sb1.5Bi0.5-xTe3, where x ranges from 0 to 0.5, involving content variations of Ba, B, and Yb, are predicted. Case 1 deals with the prediction of resistivity and Seebeck values, while case 2 predicts the heat capacity (Cp) and thermal diffusivity values of the n- and p-type TE materials. Herein, different compositions of n-type BixBayBzYbtTe3 and p-type SbxBiyBazBtYbwTe3 are synthesised, and the experimental data are fed to 26 ML models. After training all the ML models, an Artificial Neural Networks (ANN) ML model with the highest R2 values of 0.9943 and 0.9995 in cases 1 and 2, respectively, is found to outperform the other models. The prediction iteration method is applied to the ANN to predict the transport properties of the p-type Sb1.5Bi0.2Ba0.3Te3 and n-type Bi1.9Ba0.1Te3. The accuracy of the prediction iteration method increases with the number of iterations. At the end of the 100th iteration, the prediction error of the ANN model in case 1 is as low as 7%, while it is 9% in case 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
坦率的匪应助大蒜头采纳,获得20
3秒前
scc发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
king发布了新的文献求助10
5秒前
Hexagram发布了新的文献求助10
5秒前
5秒前
5秒前
陈乔完成签到,获得积分10
5秒前
rio发布了新的文献求助10
5秒前
6秒前
6秒前
竹子完成签到,获得积分10
6秒前
欢呼妙晴发布了新的文献求助10
7秒前
科目三应助默默乘云采纳,获得10
8秒前
何hyy完成签到 ,获得积分10
8秒前
8秒前
陆靖易发布了新的文献求助10
9秒前
dx完成签到,获得积分10
9秒前
10秒前
gp_liu发布了新的文献求助10
10秒前
Anqing完成签到,获得积分10
10秒前
Liu完成签到,获得积分10
11秒前
藤井树完成签到,获得积分20
11秒前
12秒前
向北发布了新的文献求助10
13秒前
徐徐必腾发布了新的文献求助10
13秒前
14秒前
14秒前
debu9完成签到,获得积分10
15秒前
CipherSage应助rio采纳,获得10
15秒前
英俊的铭应助Hexagram采纳,获得10
17秒前
18秒前
小阳阳5010完成签到 ,获得积分10
18秒前
打打应助科研小白鼠采纳,获得10
19秒前
天天发布了新的文献求助10
19秒前
王晓风发布了新的文献求助10
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214