Prediction of high temperature mechanical and thermodynamic properties of W-Mn alloys based on first principles method

材料科学 热力学 物理
作者
Runsheng Wu,Dongyang Liu,Junjie Lai,Diyou Jiang
出处
期刊:Fusion Engineering and Design [Elsevier]
卷期号:200: 114218-114218 被引量:1
标识
DOI:10.1016/j.fusengdes.2024.114218
摘要

In this paper, four kinds of W-Mn alloy structure models are constructed, namely W15Mn1, W14Mn2, W12Mn4 and W8Mn8 alloys. By investigating the phonon spectra of these alloys, it is found that W8Mn8 alloy is thermodynamically unstable. Therefore, the mechanical and thermodynamic properties of W15Mn1, W14Mn2 and W12Mn4 alloys are calculated based on first principles method. Pure W is also introduced as a comparison object. The investigation demonstrates that the bulk modulus of W-Mn alloys decreases with increasing temperature. In particular, W14Mn2 and W12Mn4 alloys decay rapidly with the increase of temperature, which indicates that excessive doping of Mn in W leads to instability of W-Mn alloys at high temperatures. For W15Mn1 alloy, the coefficient of thermal expansion is greater than that of pure W, and increases with increasing temperature, showing reasonable thermal expansion behavior. For W14Mn2 and W12Mn4 alloys, the coefficient of thermal expansion increases rapidly with increasing temperature may lead to the deformation or destruction of W-Mn alloys at high temperatures. However, all alloys have lower thermal conductivity than pure W. The thermal conductivity follows the order: pure W˃W14Mn2˃ W15Mn1˃W12Mn4. At 0 K, doping Mn in W decreases the mechanical strength of pure W, but improves its ductility. Other parameters such as anisotropy, Debye temperature, melting point, hardness, free energy, entropy, heat capacity, and equilibrium volume are also investigated. The improvement of the above performance is more conducive to the application of W-Mn alloys in the aviation field and as plasma facing first wall materials in nuclear fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃乘风完成签到,获得积分10
1秒前
Anxinxin完成签到,获得积分10
1秒前
阳佟冬卉完成签到,获得积分10
2秒前
Silence发布了新的文献求助10
2秒前
2秒前
通通通发布了新的文献求助10
3秒前
帅气的秘密完成签到 ,获得积分10
3秒前
领导范儿应助马建国采纳,获得10
3秒前
lysixsixsix完成签到,获得积分10
3秒前
4秒前
jia完成签到,获得积分10
4秒前
欣喜乐天发布了新的文献求助10
4秒前
Kiyotaka完成签到,获得积分10
4秒前
5秒前
季夏发布了新的文献求助10
5秒前
Tingshan发布了新的文献求助20
6秒前
背后的诺言完成签到 ,获得积分20
6秒前
GHOST完成签到,获得积分20
7秒前
7秒前
勤奋的蜗牛完成签到,获得积分20
7秒前
omo发布了新的文献求助10
7秒前
Akim应助糊糊采纳,获得10
8秒前
Zn应助dsjlove采纳,获得10
8秒前
月球宇航员完成签到,获得积分10
8秒前
8秒前
英姑应助亲爱的安德烈采纳,获得10
10秒前
今后应助workwork采纳,获得10
10秒前
10秒前
落后翠柏发布了新的文献求助10
10秒前
淡然凝丹完成签到,获得积分10
10秒前
Y_Jfeng完成签到,获得积分10
11秒前
潼熙甄完成签到 ,获得积分10
12秒前
Lucas应助糖糖采纳,获得10
12秒前
wyblobin发布了新的文献求助10
12秒前
星辰大海应助叶飞荷采纳,获得10
12秒前
wanmiao12完成签到,获得积分10
13秒前
13秒前
14秒前
lmr完成签到,获得积分10
14秒前
gu完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762