Federated Learning Approach for Secured Medical Recommendation in Internet of Medical Things using Homomorphic Encryption

同态加密 计算机科学 加密 密码学 互联网 服务器 过程(计算) 推荐系统 趋同(经济学) 信息隐私 机器学习 计算机网络 数据挖掘 算法 计算机安全 万维网 操作系统 经济 经济增长
作者
Eric Appiah Mantey,Conghua Zhou,Joseph Henry Anajemba,John Kingsley Arthur,Yasir Hamid,Atif Chowhan,Obinna Ogbonnia Otuu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3329-3340 被引量:7
标识
DOI:10.1109/jbhi.2024.3350232
摘要

The concept of Federated Learning (FL) is a distributed-based machine learning (ML) approach that trains its model using edge devices. Its focus is on maintaining privacy by transmitting gradient updates along with users' learning parameters to the global server in the process of training as well as preserving the integrity of data on the user-end of internet of medical things (IoMT) devices. Instead of a direct use of user data, the training which is performed on the global server is done on the parameters while the model modification is performed locally on IoMT devices. But the major drawback of this federated learning approach is its inability to preserve user privacy complete thereby resulting in gradients leakage. Thus, this study first presents a summary of the process of learning and further proposes a new approach for federated medical recommender system which employs the use of homomorphic cryptography to ensure a more privacy-preservation of user gradients during recommendations. The experimental results indicate an insignificant decrease with respect to the metrics of accuracy, however, a greater percentage of user-privacy is achieved. Further analysis also shows that performing computations on encrypted gradients at the global server scarcely has any impact on the output of the recommendation while guaranteeing a supplementary secure channel for transmitting user-based gradients back and forth the global server. The result of this analysis indicates that the performance of federated stochastic modification minimized gradient (FSMMG) algorithm is greatly increased at every given increase in the number of users and a good convergence is achieved as well. Also, experiments indicate that when compared against other existing techniques, the proposed FSMMG outperforms at 98.3% encryption accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
wanci应助细腻晓露采纳,获得10
1秒前
Lucas应助XinyiZhang采纳,获得10
2秒前
科研通AI2S应助芋头采纳,获得10
3秒前
瘦瘦的铅笔完成签到 ,获得积分10
3秒前
manan发布了新的文献求助10
3秒前
01259发布了新的文献求助30
3秒前
3秒前
斯文败类应助zyh945采纳,获得10
3秒前
南山无梅落完成签到 ,获得积分10
3秒前
淡定吃吃完成签到,获得积分10
3秒前
科研通AI5应助称心砖头采纳,获得10
4秒前
淡淡从蕾完成签到,获得积分10
4秒前
Ehgnix完成签到,获得积分10
4秒前
嘴嘴是大嘴007完成签到,获得积分10
5秒前
5秒前
但愿完成签到 ,获得积分10
5秒前
犹豫的一斩应助Pangsj采纳,获得10
6秒前
Jenny应助wjs0406采纳,获得10
6秒前
6秒前
酒九发布了新的文献求助10
6秒前
落晨发布了新的文献求助10
7秒前
包容可乐完成签到,获得积分10
7秒前
8秒前
眼睛大的一曲完成签到,获得积分10
8秒前
9秒前
英俊的铭应助wu采纳,获得10
9秒前
认真的飞扬完成签到,获得积分10
9秒前
9秒前
雪白的西牛完成签到,获得积分20
9秒前
芋头完成签到,获得积分10
9秒前
ntxiaohu完成签到,获得积分10
10秒前
四火完成签到,获得积分10
10秒前
10秒前
一裤子灰完成签到,获得积分10
10秒前
SamuelLiu完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740