Federated Learning Approach for Secured Medical Recommendation in Internet of Medical Things Using Homomorphic Encryption

同态加密 计算机科学 加密 密码学 互联网 服务器 过程(计算) 推荐系统 趋同(经济学) 信息隐私 机器学习 计算机网络 数据挖掘 算法 计算机安全 万维网 操作系统 经济 经济增长
作者
Eric Appiah Mantey,Conghua Zhou,Joseph Henry Anajemba,John Kingsley Arthur,Yasir Hamid,Atif Chowhan,Obinna Ogbonnia Otuu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3329-3340 被引量:18
标识
DOI:10.1109/jbhi.2024.3350232
摘要

The concept of Federated Learning (FL) is a distributed-based machine learning (ML) approach that trains its model using edge devices. Its focus is on maintaining privacy by transmitting gradient updates along with users' learning parameters to the global server in the process of training as well as preserving the integrity of data on the user-end of internet of medical things (IoMT) devices. Instead of a direct use of user data, the training which is performed on the global server is done on the parameters while the model modification is performed locally on IoMT devices. But the major drawback of this federated learning approach is its inability to preserve user privacy complete thereby resulting in gradients leakage. Thus, this study first presents a summary of the process of learning and further proposes a new approach for federated medical recommender system which employs the use of homomorphic cryptography to ensure a more privacy-preservation of user gradients during recommendations. The experimental results indicate an insignificant decrease with respect to the metrics of accuracy, however, a greater percentage of user-privacy is achieved. Further analysis also shows that performing computations on encrypted gradients at the global server scarcely has any impact on the output of the recommendation while guaranteeing a supplementary secure channel for transmitting user-based gradients back and forth the global server. The result of this analysis indicates that the performance of federated stochastic modification minimized gradient (FSMMG) algorithm is greatly increased at every given increase in the number of users and a good convergence is achieved as well. Also, experiments indicate that when compared against other existing techniques, the proposed FSMMG outperforms at 98.3% encryption accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zmr123发布了新的文献求助10
刚刚
刚刚
杨德帅发布了新的文献求助10
刚刚
顶级洋仔发布了新的文献求助10
刚刚
飘逸果汁完成签到,获得积分10
刚刚
zyyym发布了新的文献求助10
1秒前
Jasper应助hhui采纳,获得30
1秒前
haha发布了新的文献求助10
1秒前
李李完成签到,获得积分10
2秒前
2秒前
6367发布了新的文献求助10
2秒前
热情无春完成签到,获得积分20
2秒前
自由马丁发布了新的文献求助20
2秒前
佟鹭其完成签到 ,获得积分10
3秒前
4秒前
李李发布了新的文献求助10
5秒前
执着的海完成签到,获得积分10
5秒前
尼古拉斯发布了新的文献求助10
5秒前
盛夏之末发布了新的文献求助10
5秒前
臧为发布了新的文献求助10
6秒前
6秒前
醉生梦死发布了新的文献求助10
6秒前
7秒前
灵兰完成签到,获得积分10
7秒前
科研通AI6应助lankeren采纳,获得10
7秒前
Li发布了新的文献求助10
7秒前
领导范儿应助刘桑桑采纳,获得10
8秒前
8秒前
生动娩发布了新的文献求助10
8秒前
JW完成签到,获得积分10
9秒前
9秒前
zsj完成签到 ,获得积分10
9秒前
陀思妥耶夫斯基完成签到 ,获得积分10
10秒前
白鲜香精发布了新的文献求助10
11秒前
11秒前
wowo发布了新的文献求助30
11秒前
FashionBoy应助不是山谷采纳,获得10
11秒前
十二完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601210
求助须知:如何正确求助?哪些是违规求助? 4686646
关于积分的说明 14845466
捐赠科研通 4679924
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506091
关于科研通互助平台的介绍 1471266