亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Federated Learning Approach for Secured Medical Recommendation in Internet of Medical Things Using Homomorphic Encryption

同态加密 计算机科学 加密 密码学 互联网 服务器 过程(计算) 推荐系统 趋同(经济学) 信息隐私 机器学习 计算机网络 数据挖掘 算法 计算机安全 万维网 操作系统 经济 经济增长
作者
Eric Appiah Mantey,Conghua Zhou,Joseph Henry Anajemba,John Kingsley Arthur,Yasir Hamid,Atif Chowhan,Obinna Ogbonnia Otuu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3329-3340 被引量:18
标识
DOI:10.1109/jbhi.2024.3350232
摘要

The concept of Federated Learning (FL) is a distributed-based machine learning (ML) approach that trains its model using edge devices. Its focus is on maintaining privacy by transmitting gradient updates along with users' learning parameters to the global server in the process of training as well as preserving the integrity of data on the user-end of internet of medical things (IoMT) devices. Instead of a direct use of user data, the training which is performed on the global server is done on the parameters while the model modification is performed locally on IoMT devices. But the major drawback of this federated learning approach is its inability to preserve user privacy complete thereby resulting in gradients leakage. Thus, this study first presents a summary of the process of learning and further proposes a new approach for federated medical recommender system which employs the use of homomorphic cryptography to ensure a more privacy-preservation of user gradients during recommendations. The experimental results indicate an insignificant decrease with respect to the metrics of accuracy, however, a greater percentage of user-privacy is achieved. Further analysis also shows that performing computations on encrypted gradients at the global server scarcely has any impact on the output of the recommendation while guaranteeing a supplementary secure channel for transmitting user-based gradients back and forth the global server. The result of this analysis indicates that the performance of federated stochastic modification minimized gradient (FSMMG) algorithm is greatly increased at every given increase in the number of users and a good convergence is achieved as well. Also, experiments indicate that when compared against other existing techniques, the proposed FSMMG outperforms at 98.3% encryption accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助CC采纳,获得10
12秒前
李李爱种花完成签到 ,获得积分10
18秒前
22秒前
查莉发布了新的文献求助10
29秒前
29秒前
科研通AI6应助麻辣香锅采纳,获得10
31秒前
34秒前
56秒前
小萌兽完成签到 ,获得积分10
1分钟前
ysy完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
直率的青寒完成签到,获得积分10
2分钟前
宝石完成签到,获得积分10
3分钟前
null应助ceeray23采纳,获得20
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
羞涩的傲菡完成签到,获得积分10
4分钟前
4分钟前
nssanc完成签到,获得积分10
4分钟前
linlinlin发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
FashionBoy应助linlinlin采纳,获得10
5分钟前
十一完成签到 ,获得积分10
5分钟前
QQWRV完成签到,获得积分10
5分钟前
5分钟前
CC发布了新的文献求助10
6分钟前
ceeray23发布了新的文献求助20
6分钟前
威武千青发布了新的文献求助20
6分钟前
6分钟前
Mrzrgh完成签到,获得积分10
7分钟前
钱邦国完成签到 ,获得积分10
7分钟前
小乐儿~完成签到,获得积分10
7分钟前
闪闪关注了科研通微信公众号
8分钟前
科研通AI6应助和谐小鸭子采纳,获得10
8分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622233
求助须知:如何正确求助?哪些是违规求助? 4707262
关于积分的说明 14938986
捐赠科研通 4769501
什么是DOI,文献DOI怎么找? 2552232
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475041