Federated Learning Approach for Secured Medical Recommendation in Internet of Medical Things using Homomorphic Encryption

同态加密 计算机科学 加密 密码学 互联网 服务器 过程(计算) 推荐系统 趋同(经济学) 信息隐私 机器学习 计算机网络 数据挖掘 算法 计算机安全 万维网 操作系统 经济 经济增长
作者
Eric Appiah Mantey,Conghua Zhou,Joseph Henry Anajemba,John Kingsley Arthur,Yasir Hamid,Atif Chowhan,Obinna Ogbonnia Otuu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3329-3340 被引量:7
标识
DOI:10.1109/jbhi.2024.3350232
摘要

The concept of Federated Learning (FL) is a distributed-based machine learning (ML) approach that trains its model using edge devices. Its focus is on maintaining privacy by transmitting gradient updates along with users' learning parameters to the global server in the process of training as well as preserving the integrity of data on the user-end of internet of medical things (IoMT) devices. Instead of a direct use of user data, the training which is performed on the global server is done on the parameters while the model modification is performed locally on IoMT devices. But the major drawback of this federated learning approach is its inability to preserve user privacy complete thereby resulting in gradients leakage. Thus, this study first presents a summary of the process of learning and further proposes a new approach for federated medical recommender system which employs the use of homomorphic cryptography to ensure a more privacy-preservation of user gradients during recommendations. The experimental results indicate an insignificant decrease with respect to the metrics of accuracy, however, a greater percentage of user-privacy is achieved. Further analysis also shows that performing computations on encrypted gradients at the global server scarcely has any impact on the output of the recommendation while guaranteeing a supplementary secure channel for transmitting user-based gradients back and forth the global server. The result of this analysis indicates that the performance of federated stochastic modification minimized gradient (FSMMG) algorithm is greatly increased at every given increase in the number of users and a good convergence is achieved as well. Also, experiments indicate that when compared against other existing techniques, the proposed FSMMG outperforms at 98.3% encryption accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵莹发布了新的文献求助10
2秒前
tangyuyi发布了新的文献求助10
3秒前
小飞侠完成签到,获得积分10
3秒前
景desire发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
紧张的三问完成签到 ,获得积分10
5秒前
6秒前
研友_VZG7GZ应助AX采纳,获得10
6秒前
华仔应助Bonnie采纳,获得10
7秒前
动力小滋发布了新的文献求助10
9秒前
drjj发布了新的文献求助10
10秒前
luanzhaohui完成签到,获得积分10
10秒前
tangyuyi完成签到,获得积分10
11秒前
共享精神应助第一张采纳,获得10
12秒前
12秒前
13秒前
CipherSage应助今年19明年18采纳,获得10
14秒前
动力小滋完成签到,获得积分10
14秒前
N1koooooo发布了新的文献求助10
14秒前
福明明完成签到,获得积分10
17秒前
宋宋宋2完成签到,获得积分10
18秒前
19秒前
19秒前
自然的曼安完成签到,获得积分10
19秒前
ff发布了新的文献求助10
19秒前
江任意西完成签到 ,获得积分10
20秒前
酷炫中蓝完成签到,获得积分10
20秒前
21秒前
HeyHsc完成签到,获得积分10
22秒前
C.完成签到,获得积分10
22秒前
传奇3应助超级mxl采纳,获得10
23秒前
erhan7完成签到,获得积分10
24秒前
24秒前
emeqwq发布了新的文献求助10
24秒前
赵莹完成签到,获得积分10
25秒前
莫莫发布了新的文献求助10
25秒前
kydd发布了新的文献求助10
26秒前
26秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170956
求助须知:如何正确求助?哪些是违规求助? 2821897
关于积分的说明 7936939
捐赠科研通 2482321
什么是DOI,文献DOI怎么找? 1322472
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602627