Federated Learning Approach for Secured Medical Recommendation in Internet of Medical Things Using Homomorphic Encryption

同态加密 计算机科学 加密 密码学 互联网 服务器 过程(计算) 推荐系统 趋同(经济学) 信息隐私 机器学习 计算机网络 数据挖掘 算法 计算机安全 万维网 操作系统 经济 经济增长
作者
Eric Appiah Mantey,Conghua Zhou,Joseph Henry Anajemba,John Kingsley Arthur,Yasir Hamid,Atif Chowhan,Obinna Ogbonnia Otuu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3329-3340 被引量:18
标识
DOI:10.1109/jbhi.2024.3350232
摘要

The concept of Federated Learning (FL) is a distributed-based machine learning (ML) approach that trains its model using edge devices. Its focus is on maintaining privacy by transmitting gradient updates along with users' learning parameters to the global server in the process of training as well as preserving the integrity of data on the user-end of internet of medical things (IoMT) devices. Instead of a direct use of user data, the training which is performed on the global server is done on the parameters while the model modification is performed locally on IoMT devices. But the major drawback of this federated learning approach is its inability to preserve user privacy complete thereby resulting in gradients leakage. Thus, this study first presents a summary of the process of learning and further proposes a new approach for federated medical recommender system which employs the use of homomorphic cryptography to ensure a more privacy-preservation of user gradients during recommendations. The experimental results indicate an insignificant decrease with respect to the metrics of accuracy, however, a greater percentage of user-privacy is achieved. Further analysis also shows that performing computations on encrypted gradients at the global server scarcely has any impact on the output of the recommendation while guaranteeing a supplementary secure channel for transmitting user-based gradients back and forth the global server. The result of this analysis indicates that the performance of federated stochastic modification minimized gradient (FSMMG) algorithm is greatly increased at every given increase in the number of users and a good convergence is achieved as well. Also, experiments indicate that when compared against other existing techniques, the proposed FSMMG outperforms at 98.3% encryption accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小唐完成签到 ,获得积分0
刚刚
1秒前
1秒前
2秒前
zhang完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
lying发布了新的文献求助10
5秒前
www发布了新的文献求助10
6秒前
Liuxinyan发布了新的文献求助10
6秒前
闪闪沂发布了新的文献求助20
6秒前
yzy发布了新的文献求助10
6秒前
nut发布了新的文献求助10
7秒前
张LN完成签到,获得积分10
7秒前
7秒前
assure发布了新的文献求助10
8秒前
9秒前
9秒前
超级的金毛完成签到,获得积分10
10秒前
10秒前
张LN发布了新的文献求助10
11秒前
cyj完成签到,获得积分10
11秒前
11秒前
13秒前
14秒前
wxyshare应助香蕉冥王星采纳,获得20
14秒前
16秒前
思源应助朴实的无极采纳,获得10
16秒前
南风发布了新的文献求助10
16秒前
雪白的如天完成签到 ,获得积分10
16秒前
17秒前
crytek发布了新的文献求助10
17秒前
18秒前
张啦啦发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588611
求助须知:如何正确求助?哪些是违规求助? 4671642
关于积分的说明 14788202
捐赠科研通 4625797
什么是DOI,文献DOI怎么找? 2531896
邀请新用户注册赠送积分活动 1500456
关于科研通互助平台的介绍 1468324