Federated Learning Approach for Secured Medical Recommendation in Internet of Medical Things using Homomorphic Encryption

同态加密 计算机科学 加密 密码学 互联网 服务器 过程(计算) 推荐系统 趋同(经济学) 信息隐私 机器学习 计算机网络 数据挖掘 算法 计算机安全 万维网 操作系统 经济 经济增长
作者
Eric Appiah Mantey,Conghua Zhou,Joseph Henry Anajemba,John Kingsley Arthur,Yasir Hamid,Atif Chowhan,Obinna Ogbonnia Otuu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3329-3340 被引量:7
标识
DOI:10.1109/jbhi.2024.3350232
摘要

The concept of Federated Learning (FL) is a distributed-based machine learning (ML) approach that trains its model using edge devices. Its focus is on maintaining privacy by transmitting gradient updates along with users' learning parameters to the global server in the process of training as well as preserving the integrity of data on the user-end of internet of medical things (IoMT) devices. Instead of a direct use of user data, the training which is performed on the global server is done on the parameters while the model modification is performed locally on IoMT devices. But the major drawback of this federated learning approach is its inability to preserve user privacy complete thereby resulting in gradients leakage. Thus, this study first presents a summary of the process of learning and further proposes a new approach for federated medical recommender system which employs the use of homomorphic cryptography to ensure a more privacy-preservation of user gradients during recommendations. The experimental results indicate an insignificant decrease with respect to the metrics of accuracy, however, a greater percentage of user-privacy is achieved. Further analysis also shows that performing computations on encrypted gradients at the global server scarcely has any impact on the output of the recommendation while guaranteeing a supplementary secure channel for transmitting user-based gradients back and forth the global server. The result of this analysis indicates that the performance of federated stochastic modification minimized gradient (FSMMG) algorithm is greatly increased at every given increase in the number of users and a good convergence is achieved as well. Also, experiments indicate that when compared against other existing techniques, the proposed FSMMG outperforms at 98.3% encryption accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL发布了新的文献求助10
刚刚
Rona完成签到,获得积分10
1秒前
丸子完成签到 ,获得积分10
1秒前
1秒前
月光完成签到 ,获得积分10
1秒前
彳亍完成签到,获得积分10
2秒前
kandie完成签到,获得积分10
2秒前
嘟嘟完成签到,获得积分10
2秒前
烟花应助菲菲呀采纳,获得10
2秒前
Allowsany完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
安详剑身发布了新的文献求助10
4秒前
科研通AI6应助SHUANG采纳,获得10
4秒前
彳亍发布了新的文献求助10
5秒前
5秒前
Joker完成签到,获得积分10
6秒前
6秒前
隐形曼青应助谢尔顿采纳,获得50
7秒前
无花果应助小哈采纳,获得10
7秒前
7秒前
三水发布了新的文献求助50
7秒前
hhchhcmxhf发布了新的文献求助10
7秒前
8秒前
打打应助文献下载神器采纳,获得10
8秒前
英姑应助wb采纳,获得10
9秒前
9秒前
缥缈怀绿完成签到 ,获得积分10
9秒前
果汁完成签到,获得积分10
10秒前
月光发布了新的文献求助10
10秒前
爬不起来发布了新的文献求助10
10秒前
10秒前
10秒前
美女发布了新的文献求助10
11秒前
11秒前
12秒前
三水完成签到,获得积分10
12秒前
12秒前
小鱼干发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871