Learnable convolutional attention network for knowledge graph completion

计算机科学 图形 知识图 语义学(计算机科学) 理论计算机科学 注意力网络 情报检索 人工智能 程序设计语言
作者
Bin Shang,Yinliang Zhao,Jun Liu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:285: 111360-111360 被引量:2
标识
DOI:10.1016/j.knosys.2023.111360
摘要

Recently, graph convolutional networks (GCNs) and graph attention networks (GATs) have been used extensively in knowledge graph completion (KGC), which aims to solve the incompleteness of knowledge graphs (KGs). However, both GCNs and GATs have limitations in the KGC task, and the best method is analyzing the neighbors of each entity (pre-validating), while this process is prohibitively expensive. Furthermore, relations in KGs have specific semantics and should be considered when aggregating neighbor information (message passing). To address the above limitations, we propose a learnable convolutional attention network for knowledge graph completion named LCA-KGC. LCA-KGC introduces a knowledge graph convolutional attention network using a convolution operation before the attention mechanism to ensure structural information acquisition and avoid redundant information stacking. Furthermore, to complete the autonomous switching of GNNs types and eliminate the necessity of pre-validating the local structure of KGs, LCA-KGC designs a learnable knowledge graph convolutional attention network by comprising three types of GNNs in one learnable formulation. Moreover, a learnable message function is proposed to emphasize relational semantics when aggregating neighbor information. Extensive experiments on standard KG datasets validate the effectiveness of the proposed innovations, and LCA-KGC achieves state-of-the-art (SOTA) performance compared to existing approaches (e.g., compared to SOTA approaches, LCA-KGC improves MRR from 0.360 to 0.372 on FB15k-237 dataset, and Hits@3 from 0.561 to 0.581 on YAGO3-10 dataset).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助不喜采纳,获得10
3秒前
alexyang发布了新的文献求助10
3秒前
4秒前
科研小白发布了新的文献求助10
5秒前
阿飞完成签到,获得积分10
6秒前
404NotFOUND完成签到,获得积分10
7秒前
8秒前
10秒前
FashionBoy应助上弦月采纳,获得10
11秒前
17秒前
稳重向南发布了新的文献求助10
18秒前
19秒前
21秒前
22秒前
CipherSage应助科研通管家采纳,获得10
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
24秒前
浮游应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
烟花应助科研通管家采纳,获得10
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
小马甲应助科研通管家采纳,获得10
25秒前
叶博完成签到,获得积分10
25秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得30
25秒前
vdsvfb发布了新的文献求助10
25秒前
赘婿应助稳重向南采纳,获得10
26秒前
森宝发布了新的文献求助30
28秒前
Akim应助努力长胖的羊采纳,获得10
28秒前
alexyang发布了新的文献求助10
31秒前
研友_VZG7GZ应助瑞瑞刘采纳,获得10
37秒前
37秒前
努力长胖的羊完成签到,获得积分10
38秒前
彭于晏应助yjh采纳,获得10
38秒前
FashionBoy应助大大的寄吧采纳,获得10
42秒前
Halo完成签到,获得积分20
42秒前
42秒前
Zxc发布了新的文献求助10
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4539051
求助须知:如何正确求助?哪些是违规求助? 3973321
关于积分的说明 12308435
捐赠科研通 3640147
什么是DOI,文献DOI怎么找? 2004375
邀请新用户注册赠送积分活动 1039763
科研通“疑难数据库(出版商)”最低求助积分说明 928957