Learnable convolutional attention network for knowledge graph completion

计算机科学 图形 知识图 语义学(计算机科学) 理论计算机科学 注意力网络 情报检索 人工智能 程序设计语言
作者
Bin Shang,Yinliang Zhao,Jun Liu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:285: 111360-111360 被引量:2
标识
DOI:10.1016/j.knosys.2023.111360
摘要

Recently, graph convolutional networks (GCNs) and graph attention networks (GATs) have been used extensively in knowledge graph completion (KGC), which aims to solve the incompleteness of knowledge graphs (KGs). However, both GCNs and GATs have limitations in the KGC task, and the best method is analyzing the neighbors of each entity (pre-validating), while this process is prohibitively expensive. Furthermore, relations in KGs have specific semantics and should be considered when aggregating neighbor information (message passing). To address the above limitations, we propose a learnable convolutional attention network for knowledge graph completion named LCA-KGC. LCA-KGC introduces a knowledge graph convolutional attention network using a convolution operation before the attention mechanism to ensure structural information acquisition and avoid redundant information stacking. Furthermore, to complete the autonomous switching of GNNs types and eliminate the necessity of pre-validating the local structure of KGs, LCA-KGC designs a learnable knowledge graph convolutional attention network by comprising three types of GNNs in one learnable formulation. Moreover, a learnable message function is proposed to emphasize relational semantics when aggregating neighbor information. Extensive experiments on standard KG datasets validate the effectiveness of the proposed innovations, and LCA-KGC achieves state-of-the-art (SOTA) performance compared to existing approaches (e.g., compared to SOTA approaches, LCA-KGC improves MRR from 0.360 to 0.372 on FB15k-237 dataset, and Hits@3 from 0.561 to 0.581 on YAGO3-10 dataset).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助yiyi采纳,获得30
1秒前
2秒前
潇湘夜雨发布了新的文献求助20
3秒前
椰子完成签到,获得积分10
4秒前
enchanted完成签到,获得积分10
4秒前
yyyyyyy发布了新的文献求助30
5秒前
5秒前
Angelo完成签到 ,获得积分10
6秒前
6秒前
豆子应助hj采纳,获得20
6秒前
wang发布了新的文献求助10
6秒前
March应助wisper采纳,获得10
7秒前
陶征应助wisper采纳,获得10
7秒前
欧阳振应助wisper采纳,获得10
7秒前
KK发布了新的文献求助10
8秒前
CAOHOU应助旷野采纳,获得10
8秒前
9秒前
Spongeeeee发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
enchanted发布了新的文献求助10
11秒前
Ava应助lymmei采纳,获得10
11秒前
liii完成签到,获得积分10
14秒前
14秒前
葡萄成熟发布了新的文献求助10
16秒前
FDD发布了新的文献求助30
17秒前
星辰大海应助佳hia采纳,获得10
17秒前
晨丶完成签到,获得积分10
19秒前
小野完成签到,获得积分10
19秒前
sx发布了新的文献求助10
20秒前
俭朴自中完成签到,获得积分10
20秒前
21秒前
22秒前
23秒前
方文琛完成签到,获得积分10
24秒前
科研通AI2S应助Wei采纳,获得10
24秒前
yiyi发布了新的文献求助30
26秒前
29秒前
葡萄成熟发布了新的文献求助10
30秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979840
求助须知:如何正确求助?哪些是违规求助? 3523885
关于积分的说明 11219083
捐赠科研通 3261375
什么是DOI,文献DOI怎么找? 1800602
邀请新用户注册赠送积分活动 879189
科研通“疑难数据库(出版商)”最低求助积分说明 807202