Predictive indicators of immune therapy efficacy in hepatocellular carcinoma based on neutrophil-to-lymphocyte ratio

肝细胞癌 免疫疗法 肿瘤科 DNA甲基化 甲基化 内科学 医学 免疫学 癌症 生物 基因 基因表达 生物化学
作者
Shengzhe Lin,Y. Wang,Xinran Cai,Yunbin Ye,Yanling Chen
出处
期刊:International Immunopharmacology [Elsevier]
卷期号:128: 111477-111477 被引量:1
标识
DOI:10.1016/j.intimp.2023.111477
摘要

Hepatocellular carcinoma (HCC) exhibits high incidence and mortality rates in China. Most cases are often diagnosed at late stages and require multi-strategy therapies. In recent years, immune checkpoint inhibitors (ICIs), particularly programmed cell death protein 1 (PD-1) antibodies, have demonstrated effectiveness in comprehensive HCC treatment. However, the efficacy and prognosis vary greatly among patients. Screening suitable patients and predicting outcomes are crucial for improving the efficacy of ICIs. Although PD-L1 expression levels in tumor cells have been used as predictors of PD-1/PD-L1 antibody therapy, they may not consistently correlate with clinical response in some studies; thus, exploring new biomarkers is necessary. The neutrophil-to-lymphocyte ratio (NLR) emerged as a new predictor of ICI immunotherapy efficacy, and its application in HCC is worth exploring. This study utilizes the Cancer Genome Atlas Liver Hepatocellular Carcinoma Collection (TCGA-LIHC) project in the Genomic Data Commons (GDC) database for methylation and transcriptome data analysis. The correlation between NLR and ICI immunotherapy efficacy for HCC was evaluated, identifying differentially expressed genes. Analysis revealed 74 up-regulated and 445 down-regulated genes in the high-NLR group compared to the low-NLR group. NLR-related differential methylation analysis identified 68 hypermethylated and 65 hypomethylated probes in the NLR high group. Furthermore, a machine learning model using 27 intersecting genes predicted PD-1 antibody therapy efficacy, achieving an AUC value of 0.813. In summary, we established a predictive model for HCC immunotherapy based on 27 genes related to differential expressions and NLR-associated methylation, showing significant potential for clinical research potential in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动谷蓝完成签到,获得积分10
刚刚
ntrip发布了新的文献求助10
1秒前
2秒前
苏栀完成签到,获得积分10
2秒前
大尾巴白完成签到,获得积分10
2秒前
2秒前
SciGPT应助小白采纳,获得10
3秒前
老牛完成签到 ,获得积分10
4秒前
YXF应助Master采纳,获得10
4秒前
4秒前
5秒前
shirleydream完成签到,获得积分10
5秒前
松松包完成签到,获得积分10
5秒前
燕山堂发布了新的文献求助10
5秒前
沉甸甸发布了新的文献求助30
6秒前
biows119完成签到,获得积分0
6秒前
一碗云吞面完成签到,获得积分10
6秒前
善学以致用应助SYY采纳,获得10
7秒前
HappyFlight9898完成签到,获得积分10
7秒前
HQ发布了新的文献求助10
7秒前
saxg_hu完成签到,获得积分10
8秒前
jjl发布了新的文献求助10
8秒前
wanci应助开心的半梦采纳,获得10
8秒前
Tina完成签到 ,获得积分10
9秒前
搞怪哑铃完成签到,获得积分10
10秒前
观自在完成签到 ,获得积分10
10秒前
精明唯雪完成签到,获得积分10
11秒前
lalala发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
14秒前
TheBugsss完成签到,获得积分10
15秒前
多来米完成签到,获得积分20
15秒前
15秒前
FashionBoy应助wxy采纳,获得10
15秒前
外向宝川完成签到,获得积分10
15秒前
Master完成签到,获得积分10
16秒前
Nora发布了新的文献求助10
17秒前
17秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
Development and Industrialization of Stereoregular Polynorbornenes 500
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3418479
求助须知:如何正确求助?哪些是违规求助? 3020002
关于积分的说明 8890091
捐赠科研通 2707376
什么是DOI,文献DOI怎么找? 1484773
科研通“疑难数据库(出版商)”最低求助积分说明 686142
邀请新用户注册赠送积分活动 681347