TMCFN: Text-Supervised Multidimensional Contrastive Fusion Network for Hyperspectral and LiDAR Classification

高光谱成像 激光雷达 计算机科学 遥感 人工智能 传感器融合 融合 模式识别(心理学) 地质学 语言学 哲学
作者
Yueguang Yang,Jiahui Qu,Jiahui Qu,Tongzhen Zhang,Song Xiao,Yunsong Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2024.3374372
摘要

The joint classification of hyperspectral images (HSIs) and LiDAR data plays a crucial role in earth observation missions. Most advanced methods are based on discrete label supervision. However, since discrete labels only convey limited information that a sample belongs to a single definite class and lack of prior information, it is difficult to supervise the model to capture rich inherent semantic information in complex data distributions, hindering the classification performance. To this end, we propose a text-supervised multidimensional contrastive fusion network, termed as TMCFN, which leverages class text information to guide the learning of visual representations while establishing a semantic association of text and visual features for classification by using multidimensionally incorporated contrastive learning (CL) paradigms. Specifically, TMCFN is composed of text information encoding (TIE), visual features representation (VFR) and text-visual features alignment and classification (TVFAC). TIE is employed to extract semantic information from class text extended from class names, intrinsic attributes and inter-class relationships. VFR mainly comprises a new fusion-based contrastive feature learning module (FCFLM) to extract discriminative visual features and a text-guided attention feature fusion module (TAF2M) to fuse visual features under the guidance of text information. TVFAC optimizes the learning of visual features under the supervision of text information while using a CL paradigm to align text and visual features for establishing the semantic association, and achieves the classification by directly computing the similarity between the visual features and each text feature without an additional classifier. Experiments with three standard datasets verify the effectiveness of TMCFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡戎529发布了新的文献求助10
2秒前
科研通AI2S应助千年雪松采纳,获得10
3秒前
3秒前
7秒前
wangdake发布了新的文献求助10
8秒前
9秒前
研友_VZG7GZ应助奔奔采纳,获得10
9秒前
酷波er应助灵巧妙芙采纳,获得10
9秒前
10秒前
11秒前
卡戎529发布了新的文献求助10
15秒前
wangdake完成签到,获得积分10
16秒前
义气的灯泡完成签到,获得积分10
16秒前
鉴定为学计算学的完成签到,获得积分10
16秒前
12发布了新的文献求助10
17秒前
HuSP完成签到,获得积分10
19秒前
20秒前
领导范儿应助12采纳,获得10
22秒前
23秒前
李健的粉丝团团长应助linl采纳,获得10
27秒前
HPP123完成签到,获得积分10
28秒前
阔达书雪完成签到,获得积分10
30秒前
32秒前
enndyou完成签到,获得积分10
32秒前
33秒前
33秒前
33秒前
36秒前
激昂的采波完成签到 ,获得积分20
37秒前
Niuma发布了新的文献求助10
38秒前
38秒前
李爱国应助弄香采纳,获得10
39秒前
39秒前
奔奔发布了新的文献求助10
39秒前
hwezhu发布了新的文献求助10
41秒前
求文完成签到,获得积分10
41秒前
yu_z发布了新的文献求助10
41秒前
42秒前
耿耿完成签到,获得积分10
42秒前
包追命完成签到,获得积分10
45秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138583
求助须知:如何正确求助?哪些是违规求助? 2789532
关于积分的说明 7791599
捐赠科研通 2445937
什么是DOI,文献DOI怎么找? 1300750
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079