Predicting potential microbe-disease associations based on auto-encoder and graph convolution network

计算机科学 图形 秩(图论) 自编码 人工智能 生物网络 节点(物理) 深度学习 特征(语言学) 机器学习 数据挖掘 计算生物学 理论计算机科学 生物 数学 语言学 哲学 结构工程 组合数学 工程类
作者
Shanghui Lu,Yong Liang,Le Li,Rui Miao,Shuilin Liao,Yuexian Zou,Chengjun Yang,Deqin Ouyang
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12859-023-05611-7
摘要

The increasing body of research has consistently demonstrated the intricate correlation between the human microbiome and human well-being. Microbes can impact the efficacy and toxicity of drugs through various pathways, as well as influence the occurrence and metastasis of tumors. In clinical practice, it is crucial to elucidate the association between microbes and diseases. Although traditional biological experiments accurately identify this association, they are time-consuming, expensive, and susceptible to experimental conditions. Consequently, conducting extensive biological experiments to screen potential microbe-disease associations becomes challenging. The computational methods can solve the above problems well, but the previous computational methods still have the problems of low utilization of node features and the prediction accuracy needs to be improved. To address this issue, we propose the DAEGCNDF model predicting potential associations between microbes and diseases. Our model calculates four similar features for each microbe and disease. These features are fused to obtain a comprehensive feature matrix representing microbes and diseases. Our model first uses the graph convolutional network module to extract low-rank features with graph information of microbes and diseases, and then uses a deep sparse Auto-Encoder to extract high-rank features of microbe-disease pairs, after which the low-rank and high-rank features are spliced to improve the utilization of node features. Finally, Deep Forest was used for microbe-disease potential relationship prediction. The experimental results show that combining low-rank and high-rank features helps to improve the model performance and Deep Forest has better classification performance than the baseline model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧然完成签到,获得积分10
2秒前
郝老头完成签到,获得积分0
2秒前
3秒前
jbear完成签到 ,获得积分10
3秒前
欢喜梦凡完成签到 ,获得积分10
4秒前
风信子完成签到,获得积分10
8秒前
Helios完成签到,获得积分10
8秒前
山复尔尔完成签到 ,获得积分10
9秒前
339564965完成签到,获得积分10
9秒前
ccc完成签到,获得积分10
10秒前
风中的老九完成签到,获得积分10
11秒前
只想顺利毕业的科研狗完成签到,获得积分10
11秒前
xueshidaheng完成签到,获得积分10
13秒前
鹏举瞰冷雨完成签到,获得积分10
13秒前
Brief完成签到,获得积分10
14秒前
nanostu完成签到,获得积分10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
Jason完成签到 ,获得积分10
16秒前
blush完成签到 ,获得积分10
17秒前
标致小翠完成签到,获得积分10
23秒前
单薄碧灵完成签到 ,获得积分10
26秒前
YYY完成签到,获得积分10
27秒前
涨涨涨张完成签到 ,获得积分10
29秒前
人类不宜飞行完成签到 ,获得积分10
30秒前
jychen85完成签到 ,获得积分10
31秒前
wangxc完成签到 ,获得积分10
32秒前
静默完成签到 ,获得积分10
40秒前
hygge完成签到 ,获得积分10
45秒前
诸葛丞相完成签到 ,获得积分10
45秒前
醉熏的伊完成签到,获得积分10
49秒前
toosweet完成签到 ,获得积分10
51秒前
居里姐姐完成签到 ,获得积分10
57秒前
张张完成签到 ,获得积分10
1分钟前
夏傥完成签到,获得积分10
1分钟前
YOLO完成签到 ,获得积分10
1分钟前
zjq完成签到 ,获得积分10
1分钟前
yupingqin完成签到 ,获得积分10
1分钟前
24K纯帅完成签到,获得积分10
1分钟前
小墨墨完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162398
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7899832
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316556
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142