Predicting potential microbe-disease associations based on auto-encoder and graph convolution network

计算机科学 图形 秩(图论) 自编码 人工智能 生物网络 节点(物理) 深度学习 特征(语言学) 机器学习 数据挖掘 计算生物学 理论计算机科学 生物 数学 组合数学 工程类 哲学 结构工程 语言学
作者
Shanghui Lu,Yong Liang,Le Li,Rui Miao,Shuilin Liao,Yongfu Zou,Chengjun Yang,Dong Ouyang
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:24 (1) 被引量:2
标识
DOI:10.1186/s12859-023-05611-7
摘要

The increasing body of research has consistently demonstrated the intricate correlation between the human microbiome and human well-being. Microbes can impact the efficacy and toxicity of drugs through various pathways, as well as influence the occurrence and metastasis of tumors. In clinical practice, it is crucial to elucidate the association between microbes and diseases. Although traditional biological experiments accurately identify this association, they are time-consuming, expensive, and susceptible to experimental conditions. Consequently, conducting extensive biological experiments to screen potential microbe-disease associations becomes challenging. The computational methods can solve the above problems well, but the previous computational methods still have the problems of low utilization of node features and the prediction accuracy needs to be improved. To address this issue, we propose the DAEGCNDF model predicting potential associations between microbes and diseases. Our model calculates four similar features for each microbe and disease. These features are fused to obtain a comprehensive feature matrix representing microbes and diseases. Our model first uses the graph convolutional network module to extract low-rank features with graph information of microbes and diseases, and then uses a deep sparse Auto-Encoder to extract high-rank features of microbe-disease pairs, after which the low-rank and high-rank features are spliced to improve the utilization of node features. Finally, Deep Forest was used for microbe-disease potential relationship prediction. The experimental results show that combining low-rank and high-rank features helps to improve the model performance and Deep Forest has better classification performance than the baseline model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葡萄树完成签到,获得积分10
刚刚
Leety完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
Yuejun完成签到,获得积分20
1秒前
fionazhangdr发布了新的文献求助10
2秒前
chongya发布了新的文献求助30
2秒前
simon完成签到,获得积分10
4秒前
LZM完成签到,获得积分10
4秒前
5秒前
5秒前
肥猫发布了新的文献求助10
5秒前
577发布了新的文献求助10
6秒前
文青完成签到 ,获得积分10
6秒前
9秒前
藏在众多孤星之中完成签到,获得积分10
10秒前
Cool完成签到,获得积分10
10秒前
乐乐应助simon采纳,获得10
10秒前
啦啦啦发布了新的文献求助10
10秒前
Zikc发布了新的文献求助10
11秒前
llg发布了新的文献求助10
12秒前
乐观忆之完成签到,获得积分10
14秒前
自行者发布了新的文献求助10
15秒前
顾矜应助lueluelue采纳,获得10
15秒前
VDC发布了新的文献求助30
16秒前
Helen发布了新的文献求助10
16秒前
科研通AI2S应助张凯采纳,获得10
17秒前
18秒前
aksnow发布了新的文献求助10
18秒前
zhangyanxi完成签到,获得积分10
19秒前
Owen应助wxy采纳,获得10
19秒前
20秒前
yajuan33发布了新的文献求助10
20秒前
共享精神应助小哈采纳,获得10
22秒前
栗子发布了新的文献求助10
22秒前
llg完成签到,获得积分20
22秒前
明杰完成签到,获得积分10
23秒前
24秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954525
求助须知:如何正确求助?哪些是违规求助? 3500615
关于积分的说明 11100212
捐赠科研通 3231137
什么是DOI,文献DOI怎么找? 1786269
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719