已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting potential microbe-disease associations based on auto-encoder and graph convolution network

计算机科学 图形 秩(图论) 自编码 人工智能 生物网络 节点(物理) 深度学习 特征(语言学) 机器学习 数据挖掘 计算生物学 理论计算机科学 生物 数学 组合数学 工程类 哲学 结构工程 语言学
作者
Shanghui Lu,Yong Liang,Le Li,Rui Miao,Shuilin Liao,Yongfu Zou,Chengjun Yang,Dong Ouyang
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:24 (1) 被引量:2
标识
DOI:10.1186/s12859-023-05611-7
摘要

The increasing body of research has consistently demonstrated the intricate correlation between the human microbiome and human well-being. Microbes can impact the efficacy and toxicity of drugs through various pathways, as well as influence the occurrence and metastasis of tumors. In clinical practice, it is crucial to elucidate the association between microbes and diseases. Although traditional biological experiments accurately identify this association, they are time-consuming, expensive, and susceptible to experimental conditions. Consequently, conducting extensive biological experiments to screen potential microbe-disease associations becomes challenging. The computational methods can solve the above problems well, but the previous computational methods still have the problems of low utilization of node features and the prediction accuracy needs to be improved. To address this issue, we propose the DAEGCNDF model predicting potential associations between microbes and diseases. Our model calculates four similar features for each microbe and disease. These features are fused to obtain a comprehensive feature matrix representing microbes and diseases. Our model first uses the graph convolutional network module to extract low-rank features with graph information of microbes and diseases, and then uses a deep sparse Auto-Encoder to extract high-rank features of microbe-disease pairs, after which the low-rank and high-rank features are spliced to improve the utilization of node features. Finally, Deep Forest was used for microbe-disease potential relationship prediction. The experimental results show that combining low-rank and high-rank features helps to improve the model performance and Deep Forest has better classification performance than the baseline model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ysbatman发布了新的文献求助10
刚刚
李健应助szj采纳,获得10
刚刚
可爱的函函应助szj采纳,获得10
刚刚
乐乐应助szj采纳,获得10
1秒前
Lucas应助szj采纳,获得10
1秒前
1秒前
Hello应助szj采纳,获得10
1秒前
treasure发布了新的文献求助10
1秒前
852应助szj采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
2秒前
从容芮应助科研通管家采纳,获得30
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
科目三应助szj采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得30
2秒前
天天快乐应助szj采纳,获得10
2秒前
李爱国应助szj采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
浮浮世世应助科研通管家采纳,获得30
3秒前
Owen应助文静的涑采纳,获得10
3秒前
JXD发布了新的文献求助10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得30
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
聪明的鸭子完成签到 ,获得积分10
5秒前
希望天下0贩的0应助熙原采纳,获得10
6秒前
Yuka完成签到,获得积分10
9秒前
Carrie发布了新的文献求助10
9秒前
9秒前
坦率珍发布了新的文献求助10
9秒前
10秒前
kelo完成签到,获得积分10
11秒前
12秒前
斯文败类应助szj采纳,获得10
12秒前
水澈天澜完成签到,获得积分10
12秒前
Jasper应助szj采纳,获得10
12秒前
CodeCraft应助szj采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422