An integrated neural network method for landslide susceptibility assessment based on time-series InSAR deformation dynamic features

干涉合成孔径雷达 卷积神经网络 计算机科学 合成孔径雷达 山崩 人工智能 人工神经网络 时间序列 系列(地层学) 数据挖掘 遥感 模式识别(心理学) 地质学 机器学习 地震学 古生物学
作者
Yi He,Zhan’ao Zhao,Qing Zhu,Tao Liu,Zhang Qing,Yang Wang,Lifeng Zhang,Qiang Wang
出处
期刊:International Journal of Digital Earth [Informa]
卷期号:17 (1) 被引量:16
标识
DOI:10.1080/17538947.2023.2295408
摘要

We develop an integrated neural network landslide susceptibility assessment (LSA) method that integrates temporal dynamic features of interferometry synthetic aperture radar (InSAR) deformation data and the spatial features of landslide influencing factors. We construct a time-distributed convolutional neural network (TD-CNN) and bidirectional gated recurrent unit (Bi-GRU) to better understand the temporal dynamic features of InSAR cumulative deformation, and construct a multi-scale convolutional neural network (MSCNN) to determine the spatial features of landslide influencing factors, and construct a parallel unified deep learning network model to fuse these temporal and spatial features for LSA. Compared with the traditional MSCNN method, the accuracy of the proposed model is improved by 1.20%. The performance of the proposed model is preferable to MSCNN. The area under the receiver operating characteristic curve (AUC) of the testing set reaches 0.91. Our LSA results show that the proposed model clearly depicts areas with very high susceptibility landslides. Further, only 10.18% of the study area accurately covers 84.79% of historical landslide areas. Subjective consequences and objective indicators show that the proposed model that is integrated time-series InSAR deformation dynamic features can make full use of landslide characteristics and effectively improve the reliability of LSA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ding应助诉与山风听采纳,获得10
1秒前
绿茶很茶哈哈哈完成签到,获得积分10
2秒前
阳佟靖柏发布了新的文献求助10
2秒前
风吹似夏发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
慕青应助000000采纳,获得10
3秒前
wanci应助123采纳,获得10
3秒前
siliang完成签到,获得积分10
3秒前
sam完成签到,获得积分10
4秒前
4秒前
思源应助11采纳,获得10
5秒前
6秒前
四木木完成签到,获得积分10
6秒前
6秒前
赵维雪发布了新的文献求助10
6秒前
8秒前
瓦力文发布了新的文献求助10
8秒前
8秒前
研友_VZGvVn发布了新的文献求助10
9秒前
坚强馒头发布了新的文献求助10
10秒前
NZH发布了新的文献求助10
10秒前
13秒前
13秒前
wu发布了新的文献求助10
13秒前
聪慧若风发布了新的文献求助10
13秒前
研友_VZGvVn完成签到,获得积分10
13秒前
14秒前
谨慎晓灵完成签到,获得积分10
14秒前
Hus11221完成签到,获得积分10
14秒前
15秒前
烟花应助平常之槐采纳,获得10
16秒前
瞬间发布了新的文献求助10
17秒前
糖糖发布了新的文献求助10
17秒前
xu应助jiang采纳,获得30
17秒前
lin发布了新的文献求助10
18秒前
18秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233489
求助须知:如何正确求助?哪些是违规求助? 2880104
关于积分的说明 8213669
捐赠科研通 2547469
什么是DOI,文献DOI怎么找? 1376998
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623154