Deep Learning-Based Silicon Wafer Defect Classification: A Performance Comparison of Pretrained Networks

薄脆饼 人工智能 计算机科学 材料科学 光电子学
作者
K. Kian Ang,Koon Meng Ang,Chun Kit Ang,Kim Soon Chong,Abhishek Sharma,Tiong Hoo Lim,Sew Sun Tiang,Wei Hong Lim
出处
期刊:Lecture notes in networks and systems 卷期号:: 129-139
标识
DOI:10.1007/978-981-99-8498-5_10
摘要

Semiconductor processing technology heavily relies on defect inspection to enhance yield by identifying surface defects in the manufacturing process. However, manual inspection is prone to errors and can be a tedious process, which necessitates automated methods to replace human eyes. Deep learning techniques, such as convolutional neural networks (CNNs), are promising for automated wafer defect classification. In this study, a comparative analysis is performed on different pretrained deep learning networks to identify the most accurate and efficient network architecture for wafer defect classification. Five pretrained deep learning models, including GoogleNet, MobileNet-v2, ResNet-18, ResNet-50, and ShuffleNet, are trained and evaluated. Simulation results show that MobileNet-v2 outperforms four other pretrained networks in terms of accuracy, recall, precision, and F1-score values. The findings observed from current study can provide useful insights into the effectiveness of pretrained deep learning networks in wafer defect classification. It is believed that this study can be beneficial for manufacturing companies to improve the quality control process of silicon wafer production, leading to higher yield and better product quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大气乘风发布了新的文献求助10
1秒前
昵称发布了新的文献求助10
1秒前
林大侠发布了新的文献求助10
2秒前
Atom完成签到 ,获得积分10
2秒前
燃尔完成签到 ,获得积分10
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
Hello应助啦啦啦采纳,获得10
4秒前
4秒前
5秒前
6秒前
搜集达人应助全若之采纳,获得10
6秒前
6秒前
xiangeyedu发布了新的文献求助10
7秒前
7秒前
SaqLa完成签到,获得积分10
7秒前
HXY发布了新的文献求助30
8秒前
华仔应助晨晨采纳,获得30
9秒前
科目三应助小卫采纳,获得10
9秒前
内向雨南完成签到,获得积分10
10秒前
zgliu78完成签到,获得积分10
10秒前
思源应助zhaosh采纳,获得10
11秒前
11秒前
小马甲应助第八维采纳,获得30
12秒前
贺呵呵发布了新的文献求助10
12秒前
12秒前
酷波er应助HSD采纳,获得10
12秒前
12秒前
Dasiliy完成签到,获得积分10
12秒前
桐桐应助叁金采纳,获得30
13秒前
13秒前
领导范儿应助啦啦啦采纳,获得10
13秒前
汉堡包应助明理乐珍采纳,获得20
14秒前
14秒前
14秒前
博ge发布了新的文献求助10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979122
求助须知:如何正确求助?哪些是违规求助? 3522967
关于积分的说明 11215682
捐赠科研通 3260436
什么是DOI,文献DOI怎么找? 1799990
邀请新用户注册赠送积分活动 878770
科研通“疑难数据库(出版商)”最低求助积分说明 807061