Learning Representations for Multilead Electrocardiograms From Morphology-Rhythm Contrast

对比度(视觉) 节奏 形态学(生物学) 计算机科学 心电图 人工智能 语音识别 模式识别(心理学) 物理 声学 医学 心脏病学 地质学 古生物学
作者
Wenhan Liu,Huaicheng Zhang,Sheng Chang,Hao Wang,Jin He,Qijun Huang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15 被引量:3
标识
DOI:10.1109/tim.2024.3369152
摘要

This article proposes a novel contrastive learning framework to learn high-quality representations for multilead electrocardiograms (ECGs). It is termed morphology-rhythm contrast (MRC) since it jointly considers the morphology and rhythm characteristics of multilead ECGs. Unlike existing studies only concentrating on ECG-specific data augmentations, MRC provides a systematic solution for ECG-based contrastive learning. It proposes two new ECG-oriented data augmentation methods termed random beat selection and 0–1 pulse generation for view creation, representing the morphology and rhythm characteristics of an ECG. Then, a triple-branch network maps the three views (raw ECG, morphology, and rhythm view) to a latent space for dual contrastive learning (raw ECG versus morphology view and raw ECG versus rhythm view). This dual contrastive learning can be adjusted to prefer invariance derived from ECG morphology and rhythm, making pretrained encoders suitable for different downstream tasks. Thus, MRC reduces the gap between pretraining and downstream tasks, which is a significant challenge in contrastive learning. More importantly, with only 10% of the training data, MRC-based classification models can yield better performances than the supervised models. Such a finding demonstrates that MRC can reduce the cardiologists' labeling burden in real-world applications. Additionally, MRC achieves high performances in downstream tasks, outperforming existing studies under the same settings. To summarize, MRC is an effective contrastive learning framework for multilead ECGs. It has the potential to alleviate cardiologists' workload by aiding diagnosis and reducing manual labels in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZY完成签到,获得积分10
刚刚
共享精神应助beiyangtidu采纳,获得10
刚刚
苏东方完成签到,获得积分10
1秒前
爆米花应助无聊的凡阳采纳,获得10
1秒前
1秒前
1秒前
隐形曼青应助111采纳,获得10
4秒前
吉小洋发布了新的文献求助10
4秒前
堀江真夏完成签到 ,获得积分10
5秒前
oyc发布了新的文献求助10
6秒前
十里长亭发布了新的文献求助10
6秒前
7秒前
66发布了新的文献求助10
7秒前
CipherSage应助Hh采纳,获得10
8秒前
8秒前
8秒前
9秒前
yaoyh_gc完成签到,获得积分10
10秒前
tyzsail关注了科研通微信公众号
10秒前
12秒前
66完成签到,获得积分10
12秒前
辣比小欣完成签到,获得积分10
13秒前
13秒前
bzc完成签到,获得积分10
14秒前
疯丫头完成签到,获得积分10
14秒前
周杰伦发布了新的文献求助10
14秒前
ysf完成签到,获得积分10
15秒前
lh完成签到 ,获得积分10
16秒前
小恶于完成签到 ,获得积分10
17秒前
111完成签到,获得积分20
18秒前
qzj发布了新的文献求助10
18秒前
子车茗应助曾经以亦采纳,获得30
18秒前
18秒前
科研通AI5应助ykkxxd采纳,获得10
19秒前
吉吉完成签到 ,获得积分10
20秒前
老板娘完成签到,获得积分10
20秒前
小何完成签到 ,获得积分10
21秒前
感动的听寒完成签到,获得积分10
22秒前
Jingg完成签到,获得积分10
22秒前
Hh发布了新的文献求助10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703