Multicentre validation of a machine learning model for predicting respiratory failure after noncardiac surgery

急性呼吸衰竭 医学 呼吸衰竭 重症监护医学 可靠性工程 外科 计算机科学 工程类 麻醉 机械通风
作者
Hyun‐Kyu Yoon,Hyun Joo Kim,Yi‐Jun Kim,Hyeonhoon Lee,Bo Rim Kim,Hyongmin Oh,Hee‐Pyoung Park,Hyung‐Chul Lee
出处
期刊:BJA: British Journal of Anaesthesia [Elsevier BV]
卷期号:132 (6): 1304-1314 被引量:1
标识
DOI:10.1016/j.bja.2024.01.030
摘要

Background Postoperative respiratory failure is a serious complication that could benefit from early accurate identification of high-risk patients. We developed and validated a machine learning model to predict postoperative respiratory failure, defined as prolonged (>48 h) mechanical ventilation or reintubation after surgery. Methods Easily extractable electronic health record (EHR) variables that do not require subjective assessment by clinicians were used. From EHR data of 307,333 noncardiac surgical cases, the model, trained with a gradient boosting algorithm, utilised a derivation cohort of 99,025 cases from Seoul National University Hospital (2013–9). External validation was performed using three separate cohorts A–C from different hospitals comprising 208,308 cases. Model performance was assessed by area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC), a measure of sensitivity and precision at different thresholds. Results The model included eight variables: serum albumin, age, duration of anaesthesia, serum glucose, prothrombin time, serum creatinine, white blood cell count, and body mass index. Internally, the model achieved an AUROC of 0.912 (95% confidence interval [CI], 0.908–0.915) and AUPRC of 0.113. In external validation cohorts A, B, and C, the model achieved AUROCs of 0.879 (95% CI, 0.876–0.882), 0.872 (95% CI, 0.870–0.874), and 0.931 (95% CI, 0.925–0.936), and AUPRCs of 0.029, 0.083, and 0.124, respectively. Conclusions Utilising just eight easily extractable variables, this machine learning model demonstrated excellent discrimination in both internal and external validation for predicting postoperative respiratory failure. The model enables personalised risk stratification and facilitates data-driven clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Jieh采纳,获得10
刚刚
bkagyin应助yu采纳,获得10
刚刚
怕孤单的安蕾完成签到 ,获得积分10
1秒前
OoO发布了新的文献求助10
2秒前
2秒前
大侠发布了新的文献求助10
3秒前
LEE123发布了新的文献求助10
3秒前
慕青应助小盼虫采纳,获得10
4秒前
MANGMANG发布了新的文献求助10
4秒前
5秒前
阿Q完成签到 ,获得积分10
6秒前
6秒前
7秒前
8秒前
8秒前
大模型应助qianyuan采纳,获得10
10秒前
10秒前
阿Q关注了科研通微信公众号
11秒前
释棱完成签到 ,获得积分10
11秒前
一定长发布了新的文献求助10
12秒前
言余完成签到,获得积分10
13秒前
小盼虫发布了新的文献求助10
13秒前
tw007007发布了新的文献求助10
13秒前
14秒前
14秒前
万能图书馆应助海鸥采纳,获得10
14秒前
YMS_DAMAOMI发布了新的文献求助10
16秒前
三笠发布了新的文献求助10
17秒前
19秒前
19秒前
风华发布了新的文献求助10
19秒前
21秒前
22秒前
我是老大应助一定长采纳,获得10
23秒前
iNk应助一定长采纳,获得20
23秒前
烟花应助一定长采纳,获得10
23秒前
完美世界应助一定长采纳,获得10
23秒前
AGuang应助一定长采纳,获得20
23秒前
SYLH应助一定长采纳,获得10
23秒前
王王的苏应助一定长采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959531
求助须知:如何正确求助?哪些是违规求助? 3505774
关于积分的说明 11125924
捐赠科研通 3237671
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802902