Multicentre validation of a machine learning model for predicting respiratory failure after noncardiac surgery

急性呼吸衰竭 医学 呼吸衰竭 重症监护医学 可靠性工程 外科 计算机科学 工程类 麻醉 机械通风
作者
Hyun‐Kyu Yoon,Hyun Joo Kim,Yi‐Jun Kim,Hyeonhoon Lee,Bo Rim Kim,Hyongmin Oh,Hee‐Pyoung Park,Hyung‐Chul Lee
出处
期刊:BJA: British Journal of Anaesthesia [Elsevier]
卷期号:132 (6): 1304-1314 被引量:5
标识
DOI:10.1016/j.bja.2024.01.030
摘要

Background Postoperative respiratory failure is a serious complication that could benefit from early accurate identification of high-risk patients. We developed and validated a machine learning model to predict postoperative respiratory failure, defined as prolonged (>48 h) mechanical ventilation or reintubation after surgery. Methods Easily extractable electronic health record (EHR) variables that do not require subjective assessment by clinicians were used. From EHR data of 307,333 noncardiac surgical cases, the model, trained with a gradient boosting algorithm, utilised a derivation cohort of 99,025 cases from Seoul National University Hospital (2013–9). External validation was performed using three separate cohorts A–C from different hospitals comprising 208,308 cases. Model performance was assessed by area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC), a measure of sensitivity and precision at different thresholds. Results The model included eight variables: serum albumin, age, duration of anaesthesia, serum glucose, prothrombin time, serum creatinine, white blood cell count, and body mass index. Internally, the model achieved an AUROC of 0.912 (95% confidence interval [CI], 0.908–0.915) and AUPRC of 0.113. In external validation cohorts A, B, and C, the model achieved AUROCs of 0.879 (95% CI, 0.876–0.882), 0.872 (95% CI, 0.870–0.874), and 0.931 (95% CI, 0.925–0.936), and AUPRCs of 0.029, 0.083, and 0.124, respectively. Conclusions Utilising just eight easily extractable variables, this machine learning model demonstrated excellent discrimination in both internal and external validation for predicting postoperative respiratory failure. The model enables personalised risk stratification and facilitates data-driven clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈欣怡发布了新的文献求助20
刚刚
LIN_YX发布了新的文献求助10
1秒前
wzhong发布了新的文献求助10
1秒前
LIN_YX发布了新的文献求助10
1秒前
庸人何必自扰完成签到,获得积分10
1秒前
1秒前
ableyy发布了新的文献求助10
1秒前
谢大喵发布了新的文献求助20
1秒前
xdas发布了新的文献求助30
1秒前
bkagyin应助美好的慕青采纳,获得10
2秒前
小龚发布了新的文献求助10
2秒前
科研通AI6.1应助xi采纳,获得10
2秒前
小平完成签到,获得积分10
2秒前
momo发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助傻傻的寻琴采纳,获得10
2秒前
2秒前
2秒前
科研通AI6.1应助dara997采纳,获得10
3秒前
jiangnan完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
青木关注了科研通微信公众号
3秒前
Ava应助123...采纳,获得30
3秒前
阳阳发布了新的文献求助10
4秒前
顾矜应助优秀尔芙采纳,获得10
4秒前
太叔文博完成签到,获得积分10
4秒前
Farew完成签到,获得积分10
5秒前
研友_n0gowL完成签到,获得积分10
5秒前
5秒前
KIKO发布了新的文献求助10
5秒前
晚风发布了新的文献求助10
6秒前
彭于晏应助中国美味蘑菇采纳,获得10
6秒前
古娜拉黑暗之女神完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
高高断秋完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
大模型应助小平采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759707
求助须知:如何正确求助?哪些是违规求助? 5521712
关于积分的说明 15395175
捐赠科研通 4896734
什么是DOI,文献DOI怎么找? 2633863
邀请新用户注册赠送积分活动 1581925
关于科研通互助平台的介绍 1537410