Multicentre validation of a machine learning model for predicting respiratory failure after noncardiac surgery

急性呼吸衰竭 医学 呼吸衰竭 重症监护医学 可靠性工程 外科 计算机科学 工程类 麻醉 机械通风
作者
Hyun‐Kyu Yoon,Hyun Joo Kim,Yi‐Jun Kim,Hyeonhoon Lee,Bo Rim Kim,Hyongmin Oh,Hee‐Pyoung Park,Hyung‐Chul Lee
出处
期刊:BJA: British Journal of Anaesthesia [Elsevier]
卷期号:132 (6): 1304-1314 被引量:5
标识
DOI:10.1016/j.bja.2024.01.030
摘要

Background Postoperative respiratory failure is a serious complication that could benefit from early accurate identification of high-risk patients. We developed and validated a machine learning model to predict postoperative respiratory failure, defined as prolonged (>48 h) mechanical ventilation or reintubation after surgery. Methods Easily extractable electronic health record (EHR) variables that do not require subjective assessment by clinicians were used. From EHR data of 307,333 noncardiac surgical cases, the model, trained with a gradient boosting algorithm, utilised a derivation cohort of 99,025 cases from Seoul National University Hospital (2013–9). External validation was performed using three separate cohorts A–C from different hospitals comprising 208,308 cases. Model performance was assessed by area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC), a measure of sensitivity and precision at different thresholds. Results The model included eight variables: serum albumin, age, duration of anaesthesia, serum glucose, prothrombin time, serum creatinine, white blood cell count, and body mass index. Internally, the model achieved an AUROC of 0.912 (95% confidence interval [CI], 0.908–0.915) and AUPRC of 0.113. In external validation cohorts A, B, and C, the model achieved AUROCs of 0.879 (95% CI, 0.876–0.882), 0.872 (95% CI, 0.870–0.874), and 0.931 (95% CI, 0.925–0.936), and AUPRCs of 0.029, 0.083, and 0.124, respectively. Conclusions Utilising just eight easily extractable variables, this machine learning model demonstrated excellent discrimination in both internal and external validation for predicting postoperative respiratory failure. The model enables personalised risk stratification and facilitates data-driven clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
wwsss完成签到,获得积分10
2秒前
Polylactic完成签到 ,获得积分10
3秒前
星空发布了新的文献求助10
4秒前
哈哈哈完成签到,获得积分10
5秒前
澄钰羽完成签到,获得积分10
6秒前
加减乘除发布了新的文献求助10
6秒前
肥鹏完成签到,获得积分10
7秒前
能干世倌完成签到,获得积分10
8秒前
杨玉轩完成签到,获得积分10
8秒前
彪壮的绮烟完成签到,获得积分10
8秒前
饭煲完成签到,获得积分10
8秒前
李健应助TT采纳,获得10
8秒前
月yue完成签到,获得积分10
9秒前
温暖的钻石完成签到,获得积分10
9秒前
亚铁氰化钾完成签到,获得积分10
10秒前
Jiangaook完成签到,获得积分10
10秒前
夏天完成签到,获得积分10
12秒前
深情安青应助饭煲采纳,获得10
12秒前
狠毒的小龙虾完成签到,获得积分10
13秒前
博士完成签到 ,获得积分10
13秒前
小丸子完成签到,获得积分10
14秒前
一小会完成签到,获得积分10
14秒前
pw完成签到 ,获得积分10
15秒前
make217完成签到 ,获得积分10
16秒前
热心的冬菱完成签到 ,获得积分10
17秒前
活泼溪流完成签到,获得积分10
17秒前
花生完成签到 ,获得积分10
17秒前
ftc完成签到,获得积分10
17秒前
17秒前
乘凉完成签到,获得积分10
18秒前
18秒前
小刘爱科研完成签到,获得积分10
18秒前
甜美的松鼠完成签到 ,获得积分10
19秒前
Denning完成签到,获得积分10
19秒前
xiaolianwheat完成签到,获得积分10
19秒前
KING完成签到,获得积分10
20秒前
20秒前
L7.完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131