Multicentre validation of a machine learning model for predicting respiratory failure after noncardiac surgery

急性呼吸衰竭 医学 呼吸衰竭 重症监护医学 可靠性工程 外科 计算机科学 工程类 麻醉 机械通风
作者
Hyun‐Kyu Yoon,Hyun Joo Kim,Yi‐Jun Kim,Hyeonhoon Lee,Bo Rim Kim,Hyongmin Oh,Hee‐Pyoung Park,Hyung‐Chul Lee
出处
期刊:BJA: British Journal of Anaesthesia [Elsevier]
卷期号:132 (6): 1304-1314 被引量:5
标识
DOI:10.1016/j.bja.2024.01.030
摘要

Background Postoperative respiratory failure is a serious complication that could benefit from early accurate identification of high-risk patients. We developed and validated a machine learning model to predict postoperative respiratory failure, defined as prolonged (>48 h) mechanical ventilation or reintubation after surgery. Methods Easily extractable electronic health record (EHR) variables that do not require subjective assessment by clinicians were used. From EHR data of 307,333 noncardiac surgical cases, the model, trained with a gradient boosting algorithm, utilised a derivation cohort of 99,025 cases from Seoul National University Hospital (2013–9). External validation was performed using three separate cohorts A–C from different hospitals comprising 208,308 cases. Model performance was assessed by area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC), a measure of sensitivity and precision at different thresholds. Results The model included eight variables: serum albumin, age, duration of anaesthesia, serum glucose, prothrombin time, serum creatinine, white blood cell count, and body mass index. Internally, the model achieved an AUROC of 0.912 (95% confidence interval [CI], 0.908–0.915) and AUPRC of 0.113. In external validation cohorts A, B, and C, the model achieved AUROCs of 0.879 (95% CI, 0.876–0.882), 0.872 (95% CI, 0.870–0.874), and 0.931 (95% CI, 0.925–0.936), and AUPRCs of 0.029, 0.083, and 0.124, respectively. Conclusions Utilising just eight easily extractable variables, this machine learning model demonstrated excellent discrimination in both internal and external validation for predicting postoperative respiratory failure. The model enables personalised risk stratification and facilitates data-driven clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LpvQlZ完成签到,获得积分10
1秒前
风趣的苑博完成签到,获得积分10
2秒前
yipmyonphu完成签到,获得积分10
2秒前
2秒前
zz完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
只是听说完成签到 ,获得积分10
3秒前
ZYC007完成签到,获得积分10
3秒前
dalong完成签到,获得积分0
3秒前
研友_8QxN1Z发布了新的文献求助10
3秒前
初九和猫完成签到,获得积分10
4秒前
陈俞燕发布了新的文献求助10
4秒前
5秒前
东晓发布了新的文献求助10
5秒前
5秒前
6秒前
LordRedScience完成签到,获得积分10
6秒前
77完成签到,获得积分10
7秒前
风中诺言完成签到,获得积分10
7秒前
可达蛙完成签到,获得积分10
8秒前
lilili完成签到,获得积分0
8秒前
顺利灵枫完成签到,获得积分10
8秒前
8秒前
9秒前
RICK发布了新的文献求助10
9秒前
桀庚完成签到,获得积分10
10秒前
11秒前
松山小吏发布了新的文献求助10
11秒前
11秒前
Chow完成签到,获得积分10
12秒前
yingzi完成签到,获得积分20
12秒前
Xiaoshen发布了新的文献求助10
12秒前
小马甲应助沈子杰采纳,获得10
12秒前
田様应助元谷雪采纳,获得10
13秒前
13秒前
Locanacc完成签到,获得积分10
13秒前
Owen应助ZhangChulun采纳,获得10
14秒前
Mikey完成签到 ,获得积分10
14秒前
a553355完成签到,获得积分10
14秒前
四夕水窖完成签到,获得积分10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699035
求助须知:如何正确求助?哪些是违规求助? 5128682
关于积分的说明 15224205
捐赠科研通 4854021
什么是DOI,文献DOI怎么找? 2604437
邀请新用户注册赠送积分活动 1555924
关于科研通互助平台的介绍 1514247