化学
轨道轨道
质谱法
质量
质谱
分辨率(逻辑)
高质量
热电离质谱法
离子
离子迁移谱-质谱
色谱法
分析化学(期刊)
串联质谱法
离子源
选择性反应监测
有机化学
物理
人工智能
计算机科学
天体物理学
摘要
In charge detection mass spectrometry (CD-MS) the mass of each individual ion is determined from the measurement of its mass to charge ratio (m/z) and charge. Performing this measurement for thousands of ions allows mass distributions to be measured for heterogeneous and high mass samples that cannot be analyzed by conventional mass spectrometry (MS). CD-MS opens the door to accurate mass measurements for samples into the giga-Dalton regime, vastly expanding the reach of MS and allowing mass distributions to be determined for viruses, gene therapies, and vaccines. Following the success of CD-MS, single-ion mass measurements have recently been performed on an Orbitrap. CD-MS and Orbitrap individual ion mass spectrometry (I2MS) are described. Illustrative examples are provided, and the prospects for higher resolution measurements discussed. In the case of CD-MS, computer simulations indicate that much higher resolving powers are within reach. The ability to perform high-resolution CD-MS analysis of heterogeneous samples will be enabling and disruptive in top-down MS as high-resolution m/z and accurate charge measurements will allow very complex m/z spectra to be unraveled.
科研通智能强力驱动
Strongly Powered by AbleSci AI