Microscopic identification of foodborne bacterial pathogens based on deep learning method

副溶血性弧菌 鉴定(生物学) 深度学习 卷积神经网络 蜡样芽孢杆菌 生化工程 计算机科学 人工智能 生物 细菌 工程类 遗传学 植物
作者
Qiong Chen,Han Bao,Hui Li,Ting Wu,Xin Qi,Changqiang Zhu,Weilong Tan,Desheng Jia,Dongming Zhou,Yong Qi
出处
期刊:Food Control [Elsevier]
卷期号:161: 110413-110413 被引量:3
标识
DOI:10.1016/j.foodcont.2024.110413
摘要

Accurate and rapid detection of foodborne bacterial pathogens is critical for food quality control. Nowadays, tracking morphological bacterial properties using microscope is still a priority at the grass-roots food supervision department due to its simplicity and low cost. However, the method requires highly professional personnel and there are certain misjudgments in the process of analysis. Automatically recognizing foodborne pathogen using deep learning algorithm to replace manual microscopy will not only reduce expert cost, artificial misjudgment, and operation time in detection, but also provide more objective and accurate identification. Here, we firstly constructed a high-quality and large-scale dataset of foodborne pathogenic bacteria, allowing the deep learning-based model to be efficiently trained and achieve accurate identification. The deep convolutional neural network-based model is capable of identifying six common foodborne pathogens, including Escherichia coli (O157:H7), Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus cereus, Salmonella typhi, and Streptococcus hemolyticus, with accuracy rates of 90%–100%. This method can assist or replace the manual microscopic inspection step in traditional detection methods, and is promising to break through the traditional approach that heavily relies on manual judgment, greatly reduce the cost of experts and human errors, and provide rapid, accurate, and powerful discriminatory results in large quantities for detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助TT2022采纳,获得10
刚刚
张亚慧完成签到 ,获得积分10
刚刚
yayan发布了新的文献求助10
1秒前
多看文献发布了新的文献求助10
1秒前
波波完成签到 ,获得积分10
2秒前
蛋炒饭香喷喷儿完成签到,获得积分10
2秒前
zzt发布了新的文献求助20
4秒前
7秒前
kiterunner完成签到,获得积分10
8秒前
8秒前
9秒前
旅行者完成签到 ,获得积分10
11秒前
汕头凯奇发布了新的文献求助10
12秒前
吕佳发布了新的文献求助10
13秒前
殷勤的非笑完成签到,获得积分10
14秒前
玉玉发布了新的文献求助10
15秒前
zhang_23发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
科研通AI2S应助124332采纳,获得10
18秒前
万能图书馆应助124332采纳,获得10
18秒前
19秒前
hahhhah应助岳饼采纳,获得10
19秒前
19秒前
20秒前
20秒前
复杂宇宙发布了新的文献求助10
20秒前
22秒前
年华发布了新的文献求助10
23秒前
23秒前
Elvira完成签到,获得积分20
23秒前
23秒前
立里发布了新的文献求助10
24秒前
CodeCraft应助momo采纳,获得10
24秒前
25秒前
27秒前
兴奋棒球发布了新的文献求助10
28秒前
郝郝发布了新的文献求助10
28秒前
Neo完成签到,获得积分10
30秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267613
求助须知:如何正确求助?哪些是违规求助? 2907076
关于积分的说明 8340494
捐赠科研通 2577712
什么是DOI,文献DOI怎么找? 1401218
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 633967