Artificial intelligence image-based prediction models in IBD exhibit high risk of bias: A systematic review

医学 人工智能 缺少数据 结肠镜检查 机器学习 内科学 计算机科学 结直肠癌 癌症
作者
Xiaoxuan Liu,James Reigle,V. B. Surya Prasath,Jasbir Dhaliwal
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108093-108093 被引量:5
标识
DOI:10.1016/j.compbiomed.2024.108093
摘要

There has been an increase in the development of both machine learning (ML) and deep learning (DL) prediction models in Inflammatory Bowel Disease. We aim in this systematic review to assess the methodological quality and risk of bias of ML and DL IBD image-based prediction studies. We searched three databases, PubMed, Scopus and Embase, to identify ML and DL diagnostic or prognostic predictive models using imaging data in IBD, to Dec 31, 2022. We restricted our search to include studies that primarily used conventional imaging data, were undertaken in human participants, and published in English. Two reviewers independently reviewed the abstracts. The methodological quality of the studies was determined, and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). Forty studies were included, thirty-nine developed diagnostic models. Seven studies utilized ML approaches, six were retrospective and none used multicenter data for model development. Thirty-three studies utilized DL approaches, ten were prospective, and twelve multicenter studies. Overall, all studies demonstrated high risk of bias. ML studies were evaluated in 4 domains all rated as high risk of bias: participants (6/7), predictors (1/7), outcome (3/7), and analysis (7/7), and DL studies evaluated in 3 domains: participants (24/33), outcome (10/33), and analysis (18/33). The majority of image-based studies used colonoscopy images. The risk of bias was high in AI IBD image-based prediction models, owing to insufficient sample size, unreported missingness and lack of an external validation cohort. Models with a high risk of bias are unlikely to be generalizable and suitable for clinical implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助神奇宝贝采纳,获得10
1秒前
思源应助幽默梦山采纳,获得10
2秒前
zz发布了新的文献求助10
4秒前
5秒前
栀璃鸳挽发布了新的文献求助10
8秒前
jay2000完成签到,获得积分10
9秒前
无私的砖头完成签到 ,获得积分10
10秒前
45度人发布了新的文献求助20
11秒前
12秒前
虚拟的落雁完成签到,获得积分10
15秒前
16秒前
zz完成签到,获得积分10
17秒前
酷波er应助欢喜海采纳,获得10
19秒前
22秒前
23秒前
科研通AI2S应助nhx采纳,获得10
23秒前
maymei发布了新的文献求助10
23秒前
24秒前
24秒前
无私的砖头关注了科研通微信公众号
25秒前
26秒前
努力努力再努力1819完成签到,获得积分10
26秒前
26秒前
杉杉完成签到 ,获得积分10
26秒前
budingman发布了新的文献求助20
27秒前
budingman发布了新的文献求助20
27秒前
budingman发布了新的文献求助20
27秒前
budingman发布了新的文献求助20
27秒前
28秒前
budingman发布了新的文献求助20
29秒前
一颗橙子发布了新的文献求助10
31秒前
Akim应助陈泽采纳,获得10
31秒前
31秒前
大模型应助栀璃鸳挽采纳,获得10
32秒前
欢喜海发布了新的文献求助10
33秒前
黄新宇完成签到,获得积分10
34秒前
鲁鱼完成签到,获得积分10
38秒前
38秒前
费老五完成签到 ,获得积分10
41秒前
鲁鱼发布了新的文献求助10
43秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962497
求助须知:如何正确求助?哪些是违规求助? 3508510
关于积分的说明 11141528
捐赠科研通 3241254
什么是DOI,文献DOI怎么找? 1791452
邀请新用户注册赠送积分活动 872876
科研通“疑难数据库(出版商)”最低求助积分说明 803455