Deep Residual Multiscale Convolutional Neural Network With Attention Mechanism for Bearing Fault Diagnosis Under Strong Noise Environment

残余物 卷积神经网络 方位(导航) 噪音(视频) 断层(地质) 计算机科学 辍学(神经网络) 人工智能 人工神经网络 噪声测量 深度学习 机器学习 模式识别(心理学) 算法 地质学 降噪 地震学 图像(数学)
作者
Shuzhen Han,Shengke Sun,Zhanshan Zhao,Ziqian Luan,Pingjuan Niu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (6): 9073-9081 被引量:10
标识
DOI:10.1109/jsen.2023.3345400
摘要

In recent years, deep learning (DL) methods have gained much success in the area of intelligent fault diagnosis. However, due to the fact that the working conditions are various and the noise is inevitable, degradation of previous model is very serious. To address the challenge of bearing fault detection under strong noise environment, this article proposed a novel antinoise deep residual multiscale convolutional neural network with attention mechanism named Attention-MSCNN. First, dynamic dropout is used to improve the antinoise ability by introducing artificial noise into the training process. In addition, we design a residual connection between input and the convolved features to fully capture the characteristics of the initial input. Finally, a novel denoised multihead attention mechanism is applied to remove excess noise in raw input and obtain the relationships between long time series. The experimental results show that Attention-MSCNN can achieve robust anti strong noise performance with over 85% accuracy on the Case Western Reserve University (CWRU) dataset. On the self-collected two-stage gear drive test bench, our model achieves an accuracy of over 99% under strong noise environment. Thus, Attention-MSCNN successfully solves the problem of low detection accuracy of previous models under strong noise environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
SYLH应助温暖的碧彤采纳,获得10
1秒前
烟花应助不站在雾里采纳,获得10
1秒前
涵Allen完成签到,获得积分10
2秒前
2秒前
猴子好坏完成签到,获得积分10
2秒前
共享精神应助谈理想采纳,获得10
4秒前
紫金之恋完成签到,获得积分10
4秒前
幽默泥猴桃完成签到,获得积分10
4秒前
小蘑菇应助不攻自破采纳,获得10
4秒前
4秒前
xinxin完成签到,获得积分10
4秒前
猪小呆发布了新的文献求助10
5秒前
背后丹妗发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
1111应助xzx采纳,获得10
6秒前
Lucas应助xzx采纳,获得10
6秒前
6秒前
8秒前
jesi完成签到,获得积分10
8秒前
顾矜应助回忆里的疯狂采纳,获得10
8秒前
8秒前
张小斌发布了新的文献求助10
9秒前
spiritpope完成签到,获得积分10
9秒前
Betty发布了新的文献求助10
10秒前
10秒前
xinxin发布了新的文献求助10
11秒前
Jasper应助Sinner采纳,获得10
11秒前
火柴完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
ZY完成签到 ,获得积分10
12秒前
yu发布了新的文献求助10
13秒前
13秒前
13秒前
iNk应助科研通管家采纳,获得20
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271