GWAS analysis reveals candidate genes associated with dense tolerance (ear leaf structure) in maize (Zea mays L.)

扎梅斯 生物 候选基因 基因 农学 植物 遗传学
作者
Chunxiang Li,Yongfeng Song,Yong Zhu,Mengna Cao,Xiao Han,Jinsheng Fan,Zhichao Lv,Yan Xu,Yu Zhou,Xing Zeng,Lin Zhang,Ling Dong,Dequan Sun,Zhenhua Wang,Hong Di
出处
期刊:Journal of Integrative Agriculture [Elsevier]
被引量:4
标识
DOI:10.1016/j.jia.2024.01.023
摘要

Planting density is a major limiting factor for maize yield, and breeding for density tolerance breeding has become an urgent issue. The leaf structure of the maize ear leaf is the main factor that restricts planting density and yield composition. In this study, a natural population of 201 maize inbred lines was used for genome-wide association analysis, which identified nine SNPs on chromosomes 2, 5, 8, 9, and 10 that were significantly associated with ear leaf type structure. Further verification through qRT-PCR confirmed the association of five candidate genes with these SNPs, with the Zm00001d008651 gene showing significant differential expression in compact and flat maize inbred lines. Enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) suggested that this gene is involved in the glycolysis process. The analysis of the basic properties of this gene revealed that it encodes a stable, basic protein consisting of 593 amino acids with some hydrophobic ability. The promoter region contains stress and hormone (ABA) related elements. The mutant of this gene increased the uppermost ear leaf angle (eLA) and the first leaf below the uppermost ear (bLA) by 4.96° and 0.97° compared with normal inbred lines. Overall, this research sheds light on the regulatory mechanism of ear and leaf structure that influence density tolerance and provides solid foundational work for the development of new varieties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小落发布了新的文献求助10
刚刚
1秒前
1秒前
lidifei完成签到,获得积分20
3秒前
3秒前
雪白卿完成签到,获得积分10
4秒前
500发布了新的文献求助10
5秒前
NORMCORE完成签到,获得积分10
6秒前
7秒前
淡定的白柏完成签到 ,获得积分10
7秒前
zdx1022完成签到,获得积分10
7秒前
monere应助幻心采纳,获得10
7秒前
7秒前
9秒前
豪_seven发布了新的文献求助10
9秒前
赘婿应助knight采纳,获得10
10秒前
bymjxx完成签到,获得积分10
12秒前
Li完成签到,获得积分10
13秒前
Young完成签到,获得积分10
14秒前
14秒前
落后的楼房完成签到 ,获得积分10
15秒前
橘子发布了新的文献求助10
17秒前
依梦完成签到,获得积分10
17秒前
18秒前
20秒前
英俊的铭应助静谧采纳,获得10
20秒前
20秒前
21秒前
安沐完成签到,获得积分20
22秒前
7九完成签到,获得积分10
23秒前
烟花应助滕擎采纳,获得10
26秒前
knight发布了新的文献求助10
26秒前
27秒前
小熊发布了新的文献求助30
27秒前
一昂杨完成签到 ,获得积分10
27秒前
29秒前
许乐完成签到 ,获得积分10
30秒前
xyh发布了新的文献求助10
32秒前
32秒前
滕擎完成签到,获得积分10
32秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239853
求助须知:如何正确求助?哪些是违规求助? 2885029
关于积分的说明 8236470
捐赠科研通 2553263
什么是DOI,文献DOI怎么找? 1381540
科研通“疑难数据库(出版商)”最低求助积分说明 649259
邀请新用户注册赠送积分活动 624960