Food23:A Chinese Food Safety Dataset for Fake News Detection

计算机科学 领域(数学分析) 食品安全 假新闻 社会化媒体 现存分类群 数据科学 情报检索 互联网隐私 万维网 数学 医学 进化生物学 生物 数学分析 病理
作者
Ziliang Shang,Li Tan,Hongtao Zhang,Xujie Jiang,Yuzhao Liu,D.S. Li
标识
DOI:10.1145/3633598.3633613
摘要

In the field of fake news, the topic of food safety has gradually emerged as a focal point of concern. We have exhaustively scoured the relevant scholarly literature pertaining to the detection of fake news in the domain of food safety. Unfortunately, the extant research concerning the detection of food safety fake news remains focused on analyzing their social impact, rather than providing an effective detection method. In order to facilitate research on fake news detection in the domain of food safety, this study constructed the first Chinese text fake news dataset specific to the domain of food safety. We gathered data from currently active Chinese fact-checking websites and authoritative news sources as our primary reservoir of information. This dataset contains 2,334 news across 10 distinct subdomains. These specialized domains have effectively enriched the dataset's characteristics. According to this dataset, we design an efficient model for food safety fake news detection, known as the Food Safety Fake News Detection (FSFND). By extracting text features from various perspectives and considering the characteristics inherent to each subdomain, our model makes predictions regarding the veracity of information. We chose a selection of text classification models and multi-domain fake news detection model as comparative experiments. Experimental results indicate that our approach significantly outperforms conventional methods reliant on text and domain information for detecting food safety fake news. In addition, we conducted ablation experiments to demonstrate the effectiveness of each step in our model design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助慕容迎松采纳,获得10
5秒前
菜狗完成签到,获得积分20
7秒前
在水一方应助myit采纳,获得10
12秒前
mdjsf完成签到,获得积分10
14秒前
科研通AI2S应助疯狂老登采纳,获得10
16秒前
852应助陶醉觅夏采纳,获得10
16秒前
17秒前
小小小新关注了科研通微信公众号
17秒前
18秒前
18秒前
21秒前
搜集达人应助曹帅采纳,获得10
21秒前
孝铮发布了新的文献求助10
23秒前
24秒前
lulu猪发布了新的文献求助10
24秒前
25秒前
开朗渊思发布了新的文献求助10
25秒前
lemonfang发布了新的文献求助10
26秒前
海绵树完成签到 ,获得积分10
27秒前
27秒前
华仔应助孝铮采纳,获得10
27秒前
出金多多发布了新的文献求助10
29秒前
超级无心完成签到,获得积分10
29秒前
29秒前
科目三应助仔拉采纳,获得10
29秒前
甘楽完成签到,获得积分10
30秒前
kunkun发布了新的文献求助30
31秒前
陶醉觅夏发布了新的文献求助10
32秒前
小李发布了新的文献求助10
33秒前
yangxinLuo完成签到,获得积分20
33秒前
开朗渊思完成签到,获得积分10
33秒前
34秒前
曹帅发布了新的文献求助10
34秒前
废名完成签到,获得积分10
34秒前
在水一方应助lemonfang采纳,获得10
36秒前
37秒前
人小鸭儿大完成签到 ,获得积分10
38秒前
山山而川完成签到 ,获得积分10
38秒前
rosalieshi应助科研通管家采纳,获得30
38秒前
我是老大应助科研通管家采纳,获得10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137471
求助须知:如何正确求助?哪些是违规求助? 2788496
关于积分的说明 7786856
捐赠科研通 2444725
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625752
版权声明 601023