Multi-space channel representation learning for mono-to-binaural conversion based audio deepfake detection

立体声录音 计算机科学 编码器 频道(广播) 语音识别 不变(物理) 感知 人工智能 数学 电信 心理学 神经科学 数学物理 操作系统
作者
Rui Liu,Jinhua Zhang,Guanglai Gao
出处
期刊:Information Fusion [Elsevier]
卷期号:105: 102257-102257 被引量:2
标识
DOI:10.1016/j.inffus.2024.102257
摘要

Audio deepfake detection (ADD) aims to detect the fake audio generated by text-to-speech (TTS), and voice conversion (VC), etc., which is an emerging topic. Traditionally we read the mono signal and analyze the artifacts directly. Recently, the mono-to-binaural conversion based ADD approach has attracted increasing attention since the binaural audio signals provide a unique and comprehensive perspective on speech perception. Such method attempts tried to first convert the mono audio into binaural, then process the left and right channels respectively to discover authenticity cues. However, the acoustic information from the two channels exhibits both differences and similarities, which have not been thoroughly explored in previous research. To address this issue, we propose a new mono-to-binaural conversion based ADD framework that considers multi-space channel representation learning, termed "MSCR-ADD". Specifically, (1) the feature representations of the respective channels are learned by the channel-specific encoder and stored in the channel-specific space; (2) the feature representations capturing the difference between the two channels are learned by the channel-differential encoder and stored in the channel-differential space; (3) after which the channel-invariant encoder learn the channel commonality representations in the channel-invariant space. Note that we propose orthogonal and mutual information maximization losses to constrain the channel-specific and invariant encoders. At last, three representations from various spaces are mixed together to finalize the deepfake detection. It is worth noting that the feature representations in the channel-differential and invariant spaces unveil the differences and similarities between the two channels in binaural audio, enabling us to effectively detect artifacts in fake audio. The experimental results on four benchmark datasets demonstrate that our MSCR-ADD is superior to existing state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大熊完成签到,获得积分10
1秒前
阳光的道消完成签到,获得积分10
1秒前
海带发布了新的文献求助10
2秒前
酷波er应助Cheetahhh采纳,获得10
2秒前
3秒前
7秒前
cos完成签到,获得积分10
7秒前
花痴的骁完成签到 ,获得积分10
8秒前
海带完成签到,获得积分10
9秒前
sss完成签到,获得积分10
10秒前
maz123456完成签到,获得积分10
10秒前
11秒前
从容的幻柏完成签到,获得积分10
12秒前
科研通AI2S应助liaomr采纳,获得10
12秒前
猫大熊完成签到,获得积分10
12秒前
完美世界应助枫调yu顺采纳,获得10
13秒前
酷波er应助普鲁斯特采纳,获得10
13秒前
Cheetahhh完成签到,获得积分10
13秒前
yzy完成签到,获得积分10
13秒前
无花果应助Young离子采纳,获得10
13秒前
Fox完成签到,获得积分0
14秒前
林小雨完成签到,获得积分10
14秒前
15秒前
赵李艺完成签到 ,获得积分10
15秒前
ps完成签到 ,获得积分10
17秒前
完美世界应助曾经电源采纳,获得10
17秒前
陶醉的天与完成签到 ,获得积分10
17秒前
mkljl完成签到 ,获得积分10
17秒前
鱼鱼鱼发布了新的文献求助10
18秒前
18秒前
沉默的小耳朵完成签到 ,获得积分10
19秒前
......完成签到,获得积分20
21秒前
21秒前
惬意的晚风完成签到,获得积分10
22秒前
璐璐完成签到 ,获得积分10
23秒前
24秒前
槑槑完成签到 ,获得积分10
24秒前
雨轩完成签到,获得积分20
25秒前
佳期发布了新的文献求助10
25秒前
化工兔发布了新的文献求助10
25秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
How to mix methods: A guide to sequential, convergent, and experimental research designs 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111664
求助须知:如何正确求助?哪些是违规求助? 2761878
关于积分的说明 7667857
捐赠科研通 2416960
什么是DOI,文献DOI怎么找? 1282924
科研通“疑难数据库(出版商)”最低求助积分说明 619212
版权声明 599512