Multi-space channel representation learning for mono-to-binaural conversion based audio deepfake detection

立体声录音 计算机科学 编码器 频道(广播) 语音识别 不变(物理) 感知 人工智能 数学 电信 心理学 神经科学 数学物理 操作系统
作者
Rui Liu,Jinhua Zhang,Guanglai Gao
出处
期刊:Information Fusion [Elsevier]
卷期号:105: 102257-102257 被引量:2
标识
DOI:10.1016/j.inffus.2024.102257
摘要

Audio deepfake detection (ADD) aims to detect the fake audio generated by text-to-speech (TTS), and voice conversion (VC), etc., which is an emerging topic. Traditionally we read the mono signal and analyze the artifacts directly. Recently, the mono-to-binaural conversion based ADD approach has attracted increasing attention since the binaural audio signals provide a unique and comprehensive perspective on speech perception. Such method attempts tried to first convert the mono audio into binaural, then process the left and right channels respectively to discover authenticity cues. However, the acoustic information from the two channels exhibits both differences and similarities, which have not been thoroughly explored in previous research. To address this issue, we propose a new mono-to-binaural conversion based ADD framework that considers multi-space channel representation learning, termed "MSCR-ADD". Specifically, (1) the feature representations of the respective channels are learned by the channel-specific encoder and stored in the channel-specific space; (2) the feature representations capturing the difference between the two channels are learned by the channel-differential encoder and stored in the channel-differential space; (3) after which the channel-invariant encoder learn the channel commonality representations in the channel-invariant space. Note that we propose orthogonal and mutual information maximization losses to constrain the channel-specific and invariant encoders. At last, three representations from various spaces are mixed together to finalize the deepfake detection. It is worth noting that the feature representations in the channel-differential and invariant spaces unveil the differences and similarities between the two channels in binaural audio, enabling us to effectively detect artifacts in fake audio. The experimental results on four benchmark datasets demonstrate that our MSCR-ADD is superior to existing state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rjhgh完成签到,获得积分10
刚刚
刚刚
BIO完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
Mine_cherry应助wtl采纳,获得10
2秒前
框框发布了新的文献求助10
2秒前
Irena发布了新的文献求助10
2秒前
3秒前
东winter完成签到,获得积分10
3秒前
3秒前
yu关闭了yu文献求助
4秒前
4秒前
lunlun发布了新的文献求助30
5秒前
leinuo077完成签到,获得积分10
5秒前
清脆映真完成签到,获得积分10
5秒前
biu完成签到,获得积分10
6秒前
风乘万里发布了新的文献求助50
6秒前
蓝茶完成签到,获得积分10
6秒前
Dotson完成签到,获得积分10
6秒前
小梁发布了新的文献求助10
7秒前
YC完成签到,获得积分10
7秒前
hyper3than完成签到,获得积分10
7秒前
7秒前
科研通AI6应助李小莉0419采纳,获得10
7秒前
8秒前
8秒前
思想家发布了新的文献求助10
8秒前
rh发布了新的文献求助10
8秒前
江川完成签到,获得积分10
9秒前
田様应助灵灵妖采纳,获得10
9秒前
10秒前
邢大志完成签到,获得积分20
10秒前
想要发文章完成签到,获得积分10
10秒前
Lchemistry完成签到,获得积分10
11秒前
11秒前
唯博完成签到 ,获得积分10
12秒前
李爱国应助luraaaa采纳,获得10
12秒前
xrt完成签到,获得积分10
12秒前
蓝茶发布了新的文献求助20
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836