Bayesian Integrative Region Segmentation in Spatially Resolved Transcriptomic Studies

计算机科学 分割 聚类分析 模式识别(心理学) 贝叶斯概率 分拆(数论) 人工智能 空间分析 非参数统计 数据挖掘 图像分割 可扩展性 数学 统计 组合数学 数据库
作者
Yinqiao Yan,Xiangyu Luo
标识
DOI:10.1080/01621459.2024.2308323
摘要

The spatially resolved transcriptomic study is a recently developed biological experiment that can measure gene expressions and retain spatial information simultaneously, opening a new avenue to characterize fine-grained tissue structures. In this article, we propose a nonparametric Bayesian method named BINRES to carry out the region segmentation for a tissue section by integrating all the three types of data generated during the study—gene expressions, spatial coordinates, and the histology image. BINRES is able to capture more subtle regions than existing statistical partitioning models that only partially make use of the three data modes and is more interpretable than neural-network-based region segmentation approaches. Specifically, due to a nonparametric spatial prior, BINRES does not require a prespecified region number and can learn it automatically. BINRES also combines the image and the gene expressions in the Bayesian consensus clustering framework and thus flexibly adjusts their label alignment contribution weights in a data-adaptive manner. A computationally scalable extension is developed for large-scale studies. Both simulation studies and the real application to three mouse spatial transcriptomic datasets demonstrate that BINRES outperforms the competing methods and easily achieves the uncertainty quantification of the integrative partition. The R package of the proposed method is publicly available at https://github.com/yinqiaoyan/BINRES. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果实发布了新的文献求助10
刚刚
风中的逍遥完成签到,获得积分10
刚刚
艺涵发布了新的文献求助10
1秒前
李爱国应助AXDBB采纳,获得10
1秒前
1秒前
刘涵完成签到 ,获得积分10
2秒前
了0完成签到 ,获得积分10
3秒前
4秒前
咪咪发布了新的文献求助10
4秒前
djejje完成签到 ,获得积分10
5秒前
5秒前
白火锦鲤发布了新的文献求助10
5秒前
6秒前
阔达夜白关注了科研通微信公众号
6秒前
纸飞机的梦完成签到,获得积分10
7秒前
ting完成签到,获得积分20
7秒前
充电宝应助魔幻的觅珍采纳,获得10
7秒前
热心市民小红花应助孙Tuan采纳,获得10
8秒前
卞斌锋完成签到,获得积分20
8秒前
10秒前
陶1122发布了新的文献求助10
11秒前
11秒前
香蕉觅云应助泰勒采纳,获得10
11秒前
54741完成签到,获得积分10
11秒前
12秒前
AD钙奶完成签到 ,获得积分10
12秒前
123发布了新的文献求助10
13秒前
白火锦鲤完成签到,获得积分10
15秒前
15秒前
何垠禹发布了新的文献求助10
15秒前
15秒前
米糊发布了新的文献求助10
17秒前
master完成签到 ,获得积分10
17秒前
17秒前
18秒前
Harden发布了新的文献求助10
18秒前
热心市民小红花应助博修采纳,获得10
19秒前
meww完成签到,获得积分10
19秒前
阔达夜白发布了新的文献求助30
19秒前
丘比特应助豪子采纳,获得10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960985
求助须知:如何正确求助?哪些是违规求助? 3507215
关于积分的说明 11134512
捐赠科研通 3239640
什么是DOI,文献DOI怎么找? 1790273
邀请新用户注册赠送积分活动 872328
科研通“疑难数据库(出版商)”最低求助积分说明 803149