Simple Scalable Multimodal Semantic Segmentation Model

分割 计算机科学 人工智能 模态(人机交互) RGB颜色模型 情态动词 计算机视觉 模式 稳健性(进化) 图像分割 特征提取 语义学(计算机科学) 特征(语言学) 模式识别(心理学) 生物化学 社会科学 化学 语言学 哲学 社会学 高分子化学 基因 程序设计语言
作者
Yuchang Zhu,Nanfeng Xiao
出处
期刊:Sensors [MDPI AG]
卷期号:24 (2): 699-699
标识
DOI:10.3390/s24020699
摘要

Visual perception is a crucial component of autonomous driving systems. Traditional approaches for autonomous driving visual perception often rely on single-modal methods, and semantic segmentation tasks are accomplished by inputting RGB images. However, for semantic segmentation tasks in autonomous driving visual perception, a more effective strategy involves leveraging multiple modalities, which is because different sensors of the autonomous driving system bring diverse information, and the complementary features among different modalities enhance the robustness of the semantic segmentation modal. Contrary to the intuitive belief that more modalities lead to better accuracy, our research reveals that adding modalities to traditional semantic segmentation models can sometimes decrease precision. Inspired by the residual thinking concept, we propose a multimodal visual perception model which is capable of maintaining or even improving accuracy with the addition of any modality. Our approach is straightforward, using RGB as the main branch and employing the same feature extraction backbone for other modal branches. The modals score module (MSM) evaluates channel and spatial scores of all modality features, measuring their importance for overall semantic segmentation. Subsequently, the modal branches provide additional features to the RGB main branch through the features complementary module (FCM). Leveraging the residual thinking concept further enhances the feature extraction capabilities of all the branches. Through extensive experiments, we derived several conclusions. The integration of certain modalities into traditional semantic segmentation models tends to result in a decline in segmentation accuracy. In contrast, our proposed simple and scalable multimodal model demonstrates the ability to maintain segmentation precision when accommodating any additional modality. Moreover, our approach surpasses some state-of-the-art multimodal semantic segmentation models. Additionally, we conducted ablation experiments on the proposed model, confirming that the application of the proposed MSM, FCM, and the incorporation of residual thinking contribute significantly to the enhancement of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8DWD3Z完成签到,获得积分10
2秒前
虎皮青椒发布了新的文献求助10
2秒前
魔幻熊猫发布了新的文献求助50
3秒前
19完成签到,获得积分10
3秒前
完美世界应助shirley采纳,获得30
3秒前
4秒前
4秒前
Harssi发布了新的文献求助10
4秒前
芝士完成签到,获得积分10
4秒前
az关注了科研通微信公众号
5秒前
隐形曼青应助研友_ZragOn采纳,获得10
5秒前
开心发布了新的文献求助10
5秒前
一小只完成签到,获得积分10
6秒前
7秒前
jasmine完成签到,获得积分10
9秒前
9秒前
高贵火车发布了新的文献求助10
9秒前
Wait完成签到,获得积分10
9秒前
冷静如柏完成签到,获得积分10
9秒前
zais完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
Alice完成签到,获得积分10
10秒前
幸福的寄云完成签到,获得积分10
11秒前
shihui发布了新的文献求助10
11秒前
yongziwu完成签到,获得积分10
11秒前
11秒前
开心完成签到,获得积分10
11秒前
66发布了新的文献求助10
11秒前
11秒前
11秒前
清脆以旋完成签到,获得积分10
11秒前
天天开心完成签到,获得积分10
12秒前
winfree完成签到 ,获得积分10
12秒前
jasmine发布了新的文献求助30
13秒前
13秒前
左丘傲菡发布了新的文献求助10
13秒前
黑豆也完成签到,获得积分10
14秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143215
求助须知:如何正确求助?哪些是违规求助? 2794316
关于积分的说明 7810682
捐赠科研通 2450507
什么是DOI,文献DOI怎么找? 1303891
科研通“疑难数据库(出版商)”最低求助积分说明 627126
版权声明 601386