重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Machine learning-assisted screening of metal-organic frameworks (MOFs) for the removal of heavy metals in aqueous solution

水溶液 重金属 金属有机骨架 金属 化学 环境化学 化学工程 有机化学 吸附 工程类
作者
Ling Yuan,Mujian Xu,Yanyang Zhang,Zhihong Gao,Lingxin Zhang,Chen Cheng,Chenghan Ji,Ming Hua,Lu Lv,Weiming Zhang
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:339: 126732-126732 被引量:32
标识
DOI:10.1016/j.seppur.2024.126732
摘要

Developing heavy metal adsorbents with high efficiency is imperative for advanced wastewater treatment. So far, the design of adsorbents has primarily relied on the experimental and molecular simulation methods, which is inefficient and time-consuming due to the vast number of potential materials. This study introduces a machine learning-assisted high-throughput screening strategy to identify optimal metal-organic frameworks (MOFs) for Pb2+ removal in aqueous solution, aiming to guide the design of high-performance MOFs. First, we extracted the structural and chemical properties of MOFs from a database containing 146,205 MOFs and developed a machine learning-guided evaluation method for MOFs. This process led to the selection of 50 high performance MOFs. Considering the effects of water, we further refined our selection to 26 water-stable MOFs by literature data and computational results. Subsequently, top-10 high-performance MOFs were identified, which exhibited high Pb2+ adsorption capacity in aqueous phase. Experimental results using screened MOFs indicated the sequence of Pb2+ adsorption as follows: HKUST-1 (top1) > ZIF-8 (ranked 156) > MOF-808 (ranked 379) > MIL-101(Fe) (ranked 582) > UiO-66 (ranked 862), further validating the effectiveness of our screening strategy. Finally, based on the shared features of the top 10 MOFs, we found that regulation of topology and the coordination of free-standing carboxyl groups in MOFs can strengthen the adsorption for Pb2+. These data-driven findings can offer more rational guidance than experimental approach for the design of novel adsorbents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
道阻且长发布了新的文献求助10
刚刚
朴实的小懒虫完成签到,获得积分10
刚刚
刚刚
1秒前
Steve发布了新的文献求助10
1秒前
上官若男应助nnnaaaa采纳,获得10
2秒前
科研通AI6应助华国锋采纳,获得20
2秒前
马伊发布了新的文献求助10
2秒前
刚刚好发布了新的文献求助10
2秒前
合适的猎豹完成签到,获得积分10
3秒前
yz完成签到,获得积分10
3秒前
沐晨浠完成签到,获得积分10
3秒前
CiCi完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
隐形萃发布了新的文献求助10
4秒前
xzy998应助FN_09采纳,获得10
4秒前
虚心的皓轩完成签到 ,获得积分10
4秒前
WWWWWll发布了新的文献求助30
5秒前
5秒前
英俊的铭应助沐阳d采纳,获得10
5秒前
5秒前
jin完成签到,获得积分10
6秒前
无花果应助王王采纳,获得10
6秒前
犹豫大侠完成签到,获得积分10
6秒前
Acerie完成签到,获得积分10
6秒前
完美的八宝粥完成签到,获得积分20
7秒前
dyd发布了新的文献求助10
7秒前
genomed应助石头采纳,获得10
7秒前
充电宝应助sci大户采纳,获得10
7秒前
7秒前
你猜完成签到,获得积分10
8秒前
8秒前
梵强斯完成签到,获得积分10
8秒前
领导范儿应助ivy66x采纳,获得10
8秒前
坦率灵槐发布了新的文献求助10
8秒前
hetao发布了新的文献求助10
8秒前
9秒前
海与迟落发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466380
求助须知:如何正确求助?哪些是违规求助? 4570254
关于积分的说明 14324125
捐赠科研通 4496749
什么是DOI,文献DOI怎么找? 2463571
邀请新用户注册赠送积分活动 1452461
关于科研通互助平台的介绍 1427543