Machine learning-assisted screening of metal-organic frameworks (MOFs) for the removal of heavy metals in aqueous solution

水溶液 重金属 金属有机骨架 金属 化学 环境化学 化学工程 有机化学 吸附 工程类
作者
Ling Yuan,Mujian Xu,Yanyang Zhang,Zhihong Gao,Lingxin Zhang,Chen Cheng,Chenghan Ji,Ming Hua,Lu Lv,Weiming Zhang
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:339: 126732-126732 被引量:7
标识
DOI:10.1016/j.seppur.2024.126732
摘要

Developing heavy metal adsorbents with high efficiency is imperative for advanced wastewater treatment. So far, the design of adsorbents has primarily relied on the experimental and molecular simulation methods, which is inefficient and time-consuming due to the vast number of potential materials. This study introduces a machine learning-assisted high-throughput screening strategy to identify optimal metal-organic frameworks (MOFs) for Pb2+ removal in aqueous solution, aiming to guide the design of high-performance MOFs. First, we extracted the structural and chemical properties of MOFs from a database containing 146,205 MOFs and developed a machine learning-guided evaluation method for MOFs. This process led to the selection of 50 high performance MOFs. Considering the effects of water, we further refined our selection to 26 water-stable MOFs by literature data and computational results. Subsequently, top-10 high-performance MOFs were identified, which exhibited high Pb2+ adsorption capacity in aqueous phase. Experimental results using screened MOFs indicated the sequence of Pb2+ adsorption as follows: HKUST-1 (top1) > ZIF-8 (ranked 156) > MOF-808 (ranked 379) > MIL-101(Fe) (ranked 582) > UiO-66 (ranked 862), further validating the effectiveness of our screening strategy. Finally, based on the shared features of the top 10 MOFs, we found that regulation of topology and the coordination of free-standing carboxyl groups in MOFs can strengthen the adsorption for Pb2+. These data-driven findings can offer more rational guidance than experimental approach for the design of novel adsorbents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_ZbM2qn应助友好的落雁采纳,获得10
刚刚
Owen应助专注的可乐采纳,获得10
刚刚
刚刚
1秒前
英俊的铭应助AswinnLyu采纳,获得10
2秒前
lynn发布了新的文献求助10
2秒前
VV发布了新的文献求助10
2秒前
2秒前
淡淡的姝发布了新的文献求助10
2秒前
angel完成签到,获得积分10
3秒前
三块石头发布了新的文献求助10
3秒前
NexusExplorer应助sing采纳,获得10
3秒前
3秒前
3秒前
4秒前
wanci应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
4秒前
无花果应助科研通管家采纳,获得10
4秒前
单薄书文应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
欣喜豌豆完成签到,获得积分10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
朵颜三卫发布了新的文献求助10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
cocolu应助科研通管家采纳,获得10
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
6秒前
haha发布了新的文献求助10
6秒前
6秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305036
求助须知:如何正确求助?哪些是违规求助? 2938975
关于积分的说明 8490811
捐赠科研通 2613426
什么是DOI,文献DOI怎么找? 1427420
科研通“疑难数据库(出版商)”最低求助积分说明 662969
邀请新用户注册赠送积分活动 647614