The utility of markerless motion capture for performance analysis in racket sports

球拍 运动分析 运动捕捉 运动(物理) 计算机科学 物理医学与康复 计算机图形学(图像) 人工智能 摇摆 艺术 医学 视觉艺术
作者
Julian Quah Jian Tan,Jia Yi Chow,John Komar
标识
DOI:10.1177/17543371241230731
摘要

Recent technological advancements have allowed movements to be tracked ecologically via markerless motion capture (mocap). However, occlusions remain a major concern pertaining to markerless mocap. Within racket sports where the number of players involved are low and occlusions are minimal, there exists a unique opportunity to delve into and provide an overview on the utilisation of markerless mocap technology. Twenty studies were included after a systematic search. Several methods were applied to obtain 2D positional data. Most studies adopted some form of background subtraction or thresholding method ( n = 12), the remaining relied on pose estimation algorithms (PEA; n = 3), Hawk-Eye ( n = 2) and object recognition ( n = 1). Conversely, only the visual hull method was found to obtain 3D joint kinematics ( n = 2). Markerless mocap are conventionally used to extract joint kinematics, however, study results revealed that the predominant use of markerless mocap was to capture the movement of a player’s location on court, this finding was unexpected. Low sampling frequencies of input videos and unsuitability of model detection used in the included studies could have limited the ability for markerless mocap to accurately track movements in racket sports. While current evidence suggests that the use of PEA in racket sports to extract 3D kinematics is limited, perhaps a slightly different approach gearing towards performance analysis, specifically stroke classification with the amalgamation of player location data and joint kinematics may be worth exploring further.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fmwang完成签到,获得积分10
刚刚
刚刚
1秒前
dangdang发布了新的文献求助10
2秒前
2秒前
活泼听双发布了新的文献求助20
2秒前
2秒前
3秒前
核潜艇很优秀应助嘻嘻采纳,获得30
3秒前
大勺完成签到 ,获得积分10
4秒前
明理的凡霜完成签到,获得积分10
4秒前
sqb完成签到,获得积分10
5秒前
曾经曼梅发布了新的文献求助10
5秒前
5秒前
无极微光应助瘦瘦采纳,获得20
5秒前
连长发布了新的文献求助10
5秒前
Pooh发布了新的文献求助10
5秒前
LYDZ2发布了新的文献求助10
5秒前
6秒前
6秒前
啊棕完成签到,获得积分10
7秒前
SciGPT应助Ttttt采纳,获得10
7秒前
8秒前
dudu完成签到,获得积分10
9秒前
10秒前
无极微光应助婷123采纳,获得20
11秒前
11秒前
多情的奄完成签到,获得积分10
11秒前
情怀应助小乙大夫采纳,获得10
11秒前
Jinnnnn发布了新的文献求助10
11秒前
满天星完成签到,获得积分10
12秒前
TingtingGZ发布了新的文献求助10
13秒前
清河聂氏发布了新的文献求助10
13秒前
pluto应助曾经曼梅采纳,获得10
13秒前
14秒前
丘比特应助自由的尔蓉采纳,获得10
14秒前
孙子豪完成签到,获得积分10
14秒前
15秒前
852应助Lchemistry采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006