Differentiation between atypical anorexia nervosa and anorexia nervosa using machine learning

神经性厌食 心理学 厌食症 心理治疗师 医学 临床心理学 饮食失调 内科学
作者
Luis E. Sandoval‐Araujo,Claire E. Cusack,Christina Ralph‐Nearman,Sofie Glatt,Yuchen Han,Jeffrey Bryan,Madison A. Hooper,Andrew Karem,Cheri A. Levinson
出处
期刊:International Journal of Eating Disorders [Wiley]
卷期号:57 (4): 937-950 被引量:4
标识
DOI:10.1002/eat.24160
摘要

Abstract Objective Body mass index (BMI) is the primary criterion differentiating anorexia nervosa (AN) and atypical anorexia nervosa despite prior literature indicating few differences between disorders. Machine learning (ML) classification provides us an efficient means of accurately distinguishing between two meaningful classes given any number of features. The aim of the present study was to determine if ML algorithms can accurately distinguish AN and atypical AN given an ensemble of features excluding BMI, and if not, if the inclusion of BMI enables ML to accurately classify between the two. Methods Using an aggregate sample from seven studies consisting of individuals with AN and atypical AN who completed baseline questionnaires ( N = 448), we used logistic regression, decision tree, and random forest ML classification models each trained on two datasets, one containing demographic, eating disorder, and comorbid features without BMI, and one retaining all features and BMI. Results Model performance for all algorithms trained with BMI as a feature was deemed acceptable (mean accuracy = 74.98%, mean area under the receiving operating characteristics curve [AUC] = 74.75%), whereas model performance diminished without BMI (mean accuracy = 59.37%, mean AUC = 59.98%). Discussion Model performance was acceptable, but not strong, if BMI was included as a feature; no other features meaningfully improved classification. When BMI was excluded, ML algorithms performed poorly at classifying cases of AN and atypical AN when considering other demographic and clinical characteristics. Results suggest a reconceptualization of atypical AN should be considered. Public Significance There is a growing debate about the differences between anorexia nervosa and atypical anorexia nervosa as their diagnostic differentiation relies on BMI despite being similar otherwise. We aimed to see if machine learning could distinguish between the two disorders and found accurate classification only if BMI was used as a feature. This finding calls into question the need to differentiate between the two disorders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
datiancaihaha发布了新的文献求助10
2秒前
秦桂敏完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助30
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
peter完成签到,获得积分10
5秒前
5秒前
五山第一院士完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
友好代亦完成签到,获得积分10
7秒前
7秒前
年轻绮波完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
baimo完成签到,获得积分10
8秒前
8秒前
羊羊羊完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734851
求助须知:如何正确求助?哪些是违规求助? 5356584
关于积分的说明 15327858
捐赠科研通 4879364
什么是DOI,文献DOI怎么找? 2621846
邀请新用户注册赠送积分活动 1571071
关于科研通互助平台的介绍 1527841