亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Differentiation between atypical anorexia nervosa and anorexia nervosa using machine learning

神经性厌食 心理学 厌食症 心理治疗师 医学 临床心理学 饮食失调 内科学
作者
Luis E. Sandoval‐Araujo,Claire E. Cusack,Christina Ralph‐Nearman,Sofie Glatt,Yuchen Han,Jeffrey Bryan,Madison A. Hooper,Andrew Karem,Cheri A. Levinson
出处
期刊:International Journal of Eating Disorders [Wiley]
卷期号:57 (4): 937-950 被引量:4
标识
DOI:10.1002/eat.24160
摘要

Abstract Objective Body mass index (BMI) is the primary criterion differentiating anorexia nervosa (AN) and atypical anorexia nervosa despite prior literature indicating few differences between disorders. Machine learning (ML) classification provides us an efficient means of accurately distinguishing between two meaningful classes given any number of features. The aim of the present study was to determine if ML algorithms can accurately distinguish AN and atypical AN given an ensemble of features excluding BMI, and if not, if the inclusion of BMI enables ML to accurately classify between the two. Methods Using an aggregate sample from seven studies consisting of individuals with AN and atypical AN who completed baseline questionnaires ( N = 448), we used logistic regression, decision tree, and random forest ML classification models each trained on two datasets, one containing demographic, eating disorder, and comorbid features without BMI, and one retaining all features and BMI. Results Model performance for all algorithms trained with BMI as a feature was deemed acceptable (mean accuracy = 74.98%, mean area under the receiving operating characteristics curve [AUC] = 74.75%), whereas model performance diminished without BMI (mean accuracy = 59.37%, mean AUC = 59.98%). Discussion Model performance was acceptable, but not strong, if BMI was included as a feature; no other features meaningfully improved classification. When BMI was excluded, ML algorithms performed poorly at classifying cases of AN and atypical AN when considering other demographic and clinical characteristics. Results suggest a reconceptualization of atypical AN should be considered. Public Significance There is a growing debate about the differences between anorexia nervosa and atypical anorexia nervosa as their diagnostic differentiation relies on BMI despite being similar otherwise. We aimed to see if machine learning could distinguish between the two disorders and found accurate classification only if BMI was used as a feature. This finding calls into question the need to differentiate between the two disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YH应助kento采纳,获得50
1秒前
头孢西丁完成签到 ,获得积分10
14秒前
研友_ngX12Z完成签到 ,获得积分10
14秒前
31秒前
32秒前
LaTeXer应助Jiangzhibing采纳,获得50
35秒前
刻苦帅哥发布了新的文献求助10
37秒前
yyyy完成签到 ,获得积分10
41秒前
147完成签到,获得积分10
42秒前
Cathy完成签到,获得积分10
45秒前
wang完成签到,获得积分10
49秒前
54秒前
单纯寻菡发布了新的文献求助30
57秒前
无花果应助浮名半生采纳,获得10
57秒前
1分钟前
两个我完成签到 ,获得积分10
1分钟前
浮名半生发布了新的文献求助10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
烟花应助Juliet采纳,获得10
1分钟前
1分钟前
Zhouyi发布了新的文献求助10
1分钟前
Zhouyi完成签到,获得积分10
1分钟前
Kashing完成签到,获得积分10
1分钟前
1分钟前
2分钟前
HoraDorathy发布了新的文献求助10
2分钟前
顾矜应助南充市第一中学采纳,获得10
2分钟前
善学以致用应助HoraDorathy采纳,获得10
2分钟前
Ying完成签到,获得积分10
2分钟前
2分钟前
hamzhi完成签到,获得积分10
2分钟前
2分钟前
2分钟前
9fSucks发布了新的文献求助10
2分钟前
桐桐应助三叔采纳,获得10
2分钟前
和风完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963149
求助须知:如何正确求助?哪些是违规求助? 3509051
关于积分的说明 11144938
捐赠科研通 3242088
什么是DOI,文献DOI怎么找? 1791744
邀请新用户注册赠送积分活动 873127
科研通“疑难数据库(出版商)”最低求助积分说明 803622