清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Self‐supervised learning for improved calibrationless radial MRI with NLINV‐Net

计算机科学 欠采样 人工智能 基本事实 子空间拓扑 人工神经网络 迭代重建 图像质量 计算机视觉 心脏成像 模式识别(心理学) 图像(数学) 医学 心脏病学
作者
Moritz Blumenthal,Chiara Fantinato,Christina Unterberg‐Buchwald,Markus Haltmeier,Xiaoqing Wang,Martin Uecker
出处
期刊:Magnetic Resonance in Medicine [Wiley]
标识
DOI:10.1002/mrm.30234
摘要

Purpose: To develop a neural network architecture for improved calibrationless reconstruction of radial data when no ground truth is available for training. Methods: NLINV-Net is a model-based neural network architecture that directly estimates images and coil sensitivities from (radial) k-space data via non-linear inversion (NLINV). Combined with a training strategy using self-supervision via data undersampling (SSDU), it can be used for imaging problems where no ground truth reconstructions are available. We validated the method for (1) real-time cardiac imaging and (2) single-shot subspace-based quantitative T1 mapping. Furthermore, region-optimized virtual (ROVir) coils were used to suppress artifacts stemming from outside the FoV and to focus the k-space based SSDU loss on the region of interest. NLINV-Net based reconstructions were compared with conventional NLINV and PI-CS (parallel imaging + compressed sensing) reconstruction and the effect of the region-optimized virtual coils and the type of training loss was evaluated qualitatively. Results: NLINV-Net based reconstructions contain significantly less noise than the NLINV-based counterpart. ROVir coils effectively suppress streakings which are not suppressed by the neural networks while the ROVir-based focussed loss leads to visually sharper time series for the movement of the myocardial wall in cardiac real-time imaging. For quantitative imaging, T1-maps reconstructed using NLINV-Net show similar quality as PI-CS reconstructions, but NLINV-Net does not require slice-specific tuning of the regularization parameter. Conclusion: NLINV-Net is a versatile tool for calibrationless imaging which can be used in challenging imaging scenarios where a ground truth is not available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oscar完成签到,获得积分10
50秒前
1分钟前
肆肆完成签到,获得积分10
1分钟前
1分钟前
研友_nxw2xL完成签到,获得积分10
1分钟前
1分钟前
muriel完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
默默孱完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
CSun完成签到,获得积分10
3分钟前
3分钟前
3分钟前
CSun发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
vitamin完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
陈媛发布了新的文献求助10
4分钟前
Jasper应助陈媛采纳,获得10
4分钟前
5分钟前
jasmine完成签到,获得积分10
5分钟前
5分钟前
uikymh完成签到 ,获得积分0
5分钟前
5分钟前
Artin完成签到,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139610
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795348
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176