细菌性阴道病
代谢组
医学
微生物群
普雷沃菌属
代谢物
生物标志物发现
代谢组学
生物标志物
组学
诊断生物标志物
接收机工作特性
计算生物学
微生物学
机器学习
生物信息学
蛋白质组学
内科学
细菌
计算机科学
生物
遗传学
生物化学
基因
作者
Apoorva Challa,Jaswinder Singh Maras,Sunil Nagpal,Gaurav Tripathi,Bhupesh Taneja,Garima Kachhawa,Seema Sood,Benu Dhawan,P. Arun Acharya,Ashish Datt Upadhyay,Madhu Yadav,Rakesh Sharma,Manish Kumar Bajpai,Somesh Gupta
摘要
Bacterial vaginosis (BV) is a common clinical manifestation of a perturbed vaginal ecology associated with adverse sexual and reproductive health outcomes if left untreated. The existing diagnostic modalities are either cumbersome or require skilled expertise, warranting alternate tests. Application of machine-learning tools to heterogeneous and high-dimensional multi-omics datasets finds promising potential in data integration and may aid biomarker discovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI