Comparison of principal component regression (PCR) and partial least square regression (PLSR) modeling methods for quantifying polyethylene (PE) in recycled polypropylene (rPP) with near-infrared spectrometry (NIR)

偏最小二乘回归 主成分分析 主成分回归 均方误差 材料科学 近红外光谱 聚丙烯 分析化学(期刊) 生物系统 色谱法 统计 数学 化学 光学 物理 复合材料 生物
作者
Pixiang Wang,Ke Zhan,Xueqi Wang,Yucheng Peng,Haixin Peng,Yifen Wang,Shaoyang Liu
出处
期刊:International Journal of Polymer Analysis and Characterization [Informa]
卷期号:29 (1): 56-63
标识
DOI:10.1080/1023666x.2024.2306428
摘要

Recycled polypropylene (rPP) often contains a small amount of polyethylene (PE). Since polypropylene (PP) and PE are incompatible, the presence of PE compromises the performance of rPP materials and needs to be closely monitored. In our previous work, Raman and near-infrared (NIR) spectrometries were evaluated to monitor PE content in rPP with partial least square regression (PLSR) modeling. The NIR spectrometry exhibited a wider application range, but the accuracy of the prediction models might be further improved. In the current work, a different modeling method, principal component regression (PCR) was employed to analyze PE content in rPP with NIR spectrometry. Spectrum pretreatment methods, including multivariate scatter correction (MSC), standard normal variate transformation (SNV), smoothing, and first derivative, were investigated to improve the NIR spectrum quality. Forward and backward interval methods were used to optimize spectral range selection. The outcomes were compared with our previous PLSR modeling results. The highest accuracy in independent validation was achieved by a PCR model with an R2 of 0.9991 and a root-mean-square error of prediction (RMSEP) of 0.1596 PE%. On the other hand, a PLSR model achieved the lowest RMSEP of 0.9712 PE% for a non-colored post-consumer rPP sample. The PCR models might be sensitive to interference and more suitable for post-industrial materials, which have a simpler chemical composition. The PLSR models might have better stability and be more suitable for complicated post-consumer samples. Both the PCR and PLSR models were successfully applied to a gray commercial rPP sample.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
笨笨发布了新的文献求助10
2秒前
互助遵法尚德完成签到,获得积分0
2秒前
李西瓜完成签到 ,获得积分10
2秒前
2秒前
美满寄松完成签到,获得积分10
2秒前
2秒前
明理的天抒完成签到 ,获得积分10
2秒前
2秒前
优雅盼海发布了新的文献求助10
2秒前
朴素完成签到,获得积分10
3秒前
HY完成签到,获得积分10
3秒前
TING完成签到 ,获得积分10
3秒前
Nnn完成签到,获得积分10
3秒前
萧水白发布了新的文献求助100
4秒前
4秒前
Chenqzl发布了新的文献求助10
4秒前
angeldrn完成签到,获得积分10
4秒前
4秒前
乐乐乐完成签到,获得积分20
5秒前
彩色迎丝完成签到 ,获得积分10
5秒前
最好我儿长柏高中完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助parpate采纳,获得10
6秒前
吉吉完成签到,获得积分10
6秒前
shiche发布了新的文献求助10
7秒前
无法挽留完成签到 ,获得积分10
7秒前
chemj发布了新的文献求助10
8秒前
莹莹发布了新的文献求助10
8秒前
不吃芹菜发布了新的文献求助200
8秒前
8秒前
淳于黎昕发布了新的文献求助10
9秒前
科研小白发布了新的文献求助10
9秒前
自信的海燕完成签到,获得积分10
11秒前
糊涂的丹南完成签到 ,获得积分10
11秒前
感动的一刀完成签到,获得积分10
11秒前
香蕉觅云应助草莓熊采纳,获得10
11秒前
12秒前
12秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147491
求助须知:如何正确求助?哪些是违规求助? 2798710
关于积分的说明 7830633
捐赠科研通 2455455
什么是DOI,文献DOI怎么找? 1306817
科研通“疑难数据库(出版商)”最低求助积分说明 627917
版权声明 601587