Unsupervised motion artifact correction of turbo spin‐echo MRI using deep image prior

人工智能 计算机科学 工件(错误) 计算机视觉 卷积神经网络 运动(物理) 模式识别(心理学) 图像质量 人工神经网络 图像(数学)
作者
Jongyeon Lee,Hyunseok Seo,Wonil Lee,HyunWook Park
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:92 (1): 28-42
标识
DOI:10.1002/mrm.30026
摘要

Abstract Purpose In MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time‐consuming and resource‐intensive. In this paper, an unsupervised deep learning‐based motion artifact correction method for turbo‐spin echo MRI is proposed using the deep image prior framework. Theory and Methods The proposed approach takes advantage of the high impedance to motion artifacts offered by the neural network parameterization to remove motion artifacts in MR images. The framework consists of parameterization of MR image, automatic spatial transformation, and motion simulation model. The proposed method synthesizes motion‐corrupted images from the motion‐corrected images generated by the convolutional neural network, where an optimization process minimizes the objective function between the synthesized images and the acquired images. Results In the simulation study of 280 slices from 14 subjects, the proposed method showed a significant increase in the averaged structural similarity index measure by 0.2737 in individual coil images and by 0.4550 in the root‐sum‐of‐square images. In addition, the ablation study demonstrated the effectiveness of each proposed component in correcting motion artifacts compared to the corrected images produced by the baseline method. The experiments on real motion dataset has shown its clinical potential. Conclusion The proposed method exhibited significant quantitative and qualitative improvements in correcting rigid and in‐plane motion artifacts in MR images acquired using turbo spin‐echo sequence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会飞完成签到,获得积分10
1秒前
chens627完成签到,获得积分10
1秒前
坚强的不愁完成签到,获得积分10
1秒前
jiujiuji发布了新的文献求助10
2秒前
2秒前
小余同学完成签到,获得积分10
3秒前
乐乐应助GGbond采纳,获得10
3秒前
万能图书馆应助GGbond采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
Ye完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
Tina完成签到,获得积分10
8秒前
领导范儿应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
ccmxigua应助科研通管家采纳,获得10
9秒前
欢呼乘风应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得30
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
CDQ完成签到,获得积分10
11秒前
11秒前
12秒前
所所应助halo采纳,获得10
12秒前
隐形曼青应助优TT采纳,获得10
12秒前
12秒前
QWSS发布了新的文献求助10
13秒前
Tina发布了新的文献求助10
13秒前
江小刀发布了新的文献求助10
15秒前
ccc完成签到,获得积分10
15秒前
不安忆寒发布了新的文献求助10
15秒前
Akim应助温婉的篮球采纳,获得10
17秒前
今后应助咯咚采纳,获得10
17秒前
华仔应助Certainty橙子采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858