Unsupervised motion artifact correction of turbo spin‐echo MRI using deep image prior

人工智能 计算机科学 工件(错误) 计算机视觉 卷积神经网络 运动(物理) 模式识别(心理学) 图像质量 人工神经网络 图像(数学)
作者
Jongyeon Lee,Hyunseok Seo,Wonil Lee,HyunWook Park
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:92 (1): 28-42
标识
DOI:10.1002/mrm.30026
摘要

Abstract Purpose In MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time‐consuming and resource‐intensive. In this paper, an unsupervised deep learning‐based motion artifact correction method for turbo‐spin echo MRI is proposed using the deep image prior framework. Theory and Methods The proposed approach takes advantage of the high impedance to motion artifacts offered by the neural network parameterization to remove motion artifacts in MR images. The framework consists of parameterization of MR image, automatic spatial transformation, and motion simulation model. The proposed method synthesizes motion‐corrupted images from the motion‐corrected images generated by the convolutional neural network, where an optimization process minimizes the objective function between the synthesized images and the acquired images. Results In the simulation study of 280 slices from 14 subjects, the proposed method showed a significant increase in the averaged structural similarity index measure by 0.2737 in individual coil images and by 0.4550 in the root‐sum‐of‐square images. In addition, the ablation study demonstrated the effectiveness of each proposed component in correcting motion artifacts compared to the corrected images produced by the baseline method. The experiments on real motion dataset has shown its clinical potential. Conclusion The proposed method exhibited significant quantitative and qualitative improvements in correcting rigid and in‐plane motion artifacts in MR images acquired using turbo spin‐echo sequence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔凌云完成签到 ,获得积分10
刚刚
科目三应助小碎步采纳,获得10
1秒前
852应助老实友蕊采纳,获得10
1秒前
1秒前
Drake101发布了新的文献求助10
1秒前
1秒前
2秒前
NexusExplorer应助碧蓝贞采纳,获得10
2秒前
科研通AI2S应助分歧者咋咋采纳,获得10
2秒前
无欲无求完成签到 ,获得积分20
2秒前
2秒前
获奖感言完成签到,获得积分10
3秒前
3秒前
慕青应助狐尔莫采纳,获得10
3秒前
3秒前
桶桶完成签到,获得积分20
3秒前
英俊的铭应助快乐小子采纳,获得10
3秒前
Stella应助Dali采纳,获得10
4秒前
忧心的洙完成签到,获得积分10
4秒前
吴宵完成签到,获得积分10
4秒前
hh发布了新的文献求助10
4秒前
若花若草完成签到,获得积分10
4秒前
赘婿应助Nafis采纳,获得10
4秒前
5秒前
泡泡发布了新的文献求助10
5秒前
柏不斜完成签到,获得积分10
6秒前
慧慧完成签到,获得积分10
6秒前
Dali应助ceeray23采纳,获得20
6秒前
qq完成签到,获得积分10
6秒前
所所应助小汪快跑采纳,获得10
6秒前
股价发布了新的文献求助10
6秒前
天天快乐应助er采纳,获得10
7秒前
灰太狼养的小灰灰完成签到,获得积分10
7秒前
大方忆秋完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
一颗小泡菜完成签到,获得积分10
7秒前
7秒前
王博士完成签到,获得积分10
7秒前
才露尖尖角完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997