Improving the accuracy of wind speed spatial interpolation: A pre-processing algorithm for wind speed dynamic time warping interpolation

插值(计算机图形学) 风速 动态时间归整 多元插值 算法 图像扭曲 计算机科学 气象学 双线性插值 计算机图形学(图像) 人工智能 计算机视觉 地理 动画
作者
Xin Chen,Xiaoling Ye,Xiong Xiong,Yingchao Zhang,Yuanlu Li
出处
期刊:Energy [Elsevier]
卷期号:295: 130876-130876 被引量:1
标识
DOI:10.1016/j.energy.2024.130876
摘要

Wind power is one of the most vital renewable energy resources in the world. Wind energy production is directly correlated with the quality and quantity of wind speed data. Interpolation techniques can be employed to fill in the gaps in the current wind speed observation data series. However, existing methods for obtaining blank data do not pre-regulate the regional spatial wind speed sequence and instead rely on direct interpolation, which leads to low accuracy in the interpolation. This is not a problem with the model itself, but rather with the wind speed flowing in space and exhibiting sequence misalignment on the timeline. To address this issue, this study proposes a Wind Speed Dynamic Time Warping (WSDTW) algorithm based on Dynamic Time Warping (DTW) to match similar wind speed reduction sequences in terms of time error. We used the shape context descriptor to encode wind speed and introduced wind rose descriptors to represent wind direction initially. The matching cost of DTW was then optimized. Finally, five common interpolation methods were selected to evaluate the method. The research results indicate that interpolation after WSDTW matching and warping can significantly improve the accuracy of wind speed interpolation and reduce the spatial dependence of wind speed. This method demonstrates good stability and generalization, performing exceptionally well in situations where there are gaps in regional wind speed data or missing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呵呵呵呵完成签到,获得积分10
1秒前
1秒前
远方发布了新的文献求助10
2秒前
zxc111关注了科研通微信公众号
2秒前
3秒前
nanhe698发布了新的文献求助10
3秒前
Huang完成签到,获得积分10
3秒前
碳土不凡完成签到 ,获得积分10
4秒前
4秒前
淡淡采白发布了新的文献求助10
5秒前
5秒前
6秒前
Akim应助dingdong采纳,获得10
6秒前
6秒前
6秒前
satchzhao发布了新的文献求助10
6秒前
可爱的函函应助尺素寸心采纳,获得10
6秒前
66发布了新的文献求助10
7秒前
一鸣完成签到,获得积分10
7秒前
7秒前
ding应助呵呵呵呵采纳,获得10
7秒前
7秒前
汉堡包应助hkxfg采纳,获得10
9秒前
10秒前
sw完成签到,获得积分10
10秒前
没有神的过往完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
13秒前
芋圆不圆完成签到,获得积分10
14秒前
招财不肥发布了新的文献求助10
15秒前
zxc111发布了新的文献求助10
15秒前
魔幻的从梦完成签到,获得积分10
15秒前
16秒前
Xiaoxiao应助sunyexuan采纳,获得10
17秒前
18秒前
19秒前
淼淼之锋完成签到 ,获得积分10
19秒前
赢赢完成签到 ,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808