Analysis of a friction-induced vibration piezoelectric energy generator under linear, bi-linear, and impact conditions

振动 线性同余发生器 发电机(电路理论) 压电 直线电机 声学 材料科学 结构工程 机械 物理 工程类 机械工程 功率(物理) 量子力学 磁铁
作者
Yu Xiao,Nan Wu,Quan Wang
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:: 109148-109148 被引量:4
标识
DOI:10.1016/j.ijmecsci.2024.109148
摘要

The mismatch in natural frequencies between the piezoelectric energy generator and the energy source affects its energy generation performance. In this research, a novel piezoelectric energy generator with linear, bi-linear, and impact design configurations is proposed. The energy generator utilizes friction as excitation to achieve self-exciting friction-induced vibration (FIV) close to the systems’ resonant frequencies for piezoelectric energy generation. The dynamic response under FIV is described by a mathematical model incorporating the piezoelectric coupling effect. The energy generation from piezoelectric material is evaluated by simulating the charging process of a capacitor using an iterative method. The reliability of the model and the stable high-frequency FIV phenomenon with linear, bi-linear, and impact design configurations are validated by experiment. Furthermore, parameter studies are conducted to investigate their effect on the efficiency and effectiveness of energy generation. With a normal load FN = 30 N and an initial sliding velocity v0 = 0.542 m/s, the linear, bi-linear, and impact design configurations yield peak-to-peak voltages of approximately 2.9 V, 3.8 V, and 20.6 V, respectively. Higher voltages can be generated under optimal operating conditions. The proposed energy generator can be integrated into rotating or sliding equipment to harness the energy derived from FIV. Enhanced energy generation performance can be achieved by modifying structural design and incorporating materials with better properties. The current study paves the way for piezoelectric energy generation using FIV and explores the potential of utilizing dynamic frictional signals in sensing and structural health monitoring scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zy完成签到,获得积分10
2秒前
开心果子发布了新的文献求助10
2秒前
云痴子完成签到,获得积分10
3秒前
SciGPT应助粥粥采纳,获得10
3秒前
3秒前
3秒前
4秒前
苏源完成签到,获得积分10
4秒前
wu关闭了wu文献求助
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
6秒前
Shawn完成签到,获得积分10
7秒前
yltstt完成签到,获得积分10
8秒前
李小新发布了新的文献求助10
8秒前
成梦发布了新的文献求助10
9秒前
乐乐应助xuex1采纳,获得10
9秒前
蜂鸟5156发布了新的文献求助10
9秒前
李爱国应助VDC采纳,获得10
10秒前
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
ns完成签到,获得积分10
11秒前
细腻晓露发布了新的文献求助10
11秒前
李本来发布了新的文献求助10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得30
12秒前
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
NN应助科研通管家采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808