亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis of a friction-induced vibration piezoelectric energy generator under linear, bi-linear, and impact conditions

振动 线性同余发生器 发电机(电路理论) 压电 直线电机 声学 材料科学 结构工程 机械 物理 工程类 机械工程 功率(物理) 磁铁 量子力学
作者
Yu Xiao,Nan Wu,Quan Wang
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:: 109148-109148 被引量:4
标识
DOI:10.1016/j.ijmecsci.2024.109148
摘要

The mismatch in natural frequencies between the piezoelectric energy generator and the energy source affects its energy generation performance. In this research, a novel piezoelectric energy generator with linear, bi-linear, and impact design configurations is proposed. The energy generator utilizes friction as excitation to achieve self-exciting friction-induced vibration (FIV) close to the systems’ resonant frequencies for piezoelectric energy generation. The dynamic response under FIV is described by a mathematical model incorporating the piezoelectric coupling effect. The energy generation from piezoelectric material is evaluated by simulating the charging process of a capacitor using an iterative method. The reliability of the model and the stable high-frequency FIV phenomenon with linear, bi-linear, and impact design configurations are validated by experiment. Furthermore, parameter studies are conducted to investigate their effect on the efficiency and effectiveness of energy generation. With a normal load FN = 30 N and an initial sliding velocity v0 = 0.542 m/s, the linear, bi-linear, and impact design configurations yield peak-to-peak voltages of approximately 2.9 V, 3.8 V, and 20.6 V, respectively. Higher voltages can be generated under optimal operating conditions. The proposed energy generator can be integrated into rotating or sliding equipment to harness the energy derived from FIV. Enhanced energy generation performance can be achieved by modifying structural design and incorporating materials with better properties. The current study paves the way for piezoelectric energy generation using FIV and explores the potential of utilizing dynamic frictional signals in sensing and structural health monitoring scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
chen完成签到,获得积分10
7秒前
火山蜗牛完成签到,获得积分10
9秒前
chen发布了新的文献求助10
11秒前
11秒前
王钢铁完成签到,获得积分10
11秒前
科研通AI2S应助盛夏如花采纳,获得10
12秒前
16秒前
小森华东完成签到 ,获得积分10
18秒前
倒逆之蝶发布了新的文献求助10
20秒前
在水一方应助帅气的亦玉采纳,获得10
20秒前
25秒前
27秒前
Bin发布了新的文献求助10
28秒前
32秒前
38秒前
39秒前
39秒前
44秒前
47秒前
lld发布了新的文献求助10
48秒前
科研通AI6应助科研通管家采纳,获得10
48秒前
香蕉觅云应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
54秒前
NEUROVASCULAR完成签到,获得积分10
54秒前
踏实南瓜胖墩墩完成签到,获得积分10
56秒前
NEUROVASCULAR发布了新的文献求助10
58秒前
58秒前
1分钟前
隐形曼青应助lld采纳,获得10
1分钟前
1分钟前
善善完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
kk发布了新的文献求助10
1分钟前
1分钟前
倒逆之蝶发布了新的文献求助10
1分钟前
老实的怀蕊完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664093
求助须知:如何正确求助?哪些是违规求助? 4857445
关于积分的说明 15107133
捐赠科研通 4822538
什么是DOI,文献DOI怎么找? 2581527
邀请新用户注册赠送积分活动 1535744
关于科研通互助平台的介绍 1493963