Preparation and mechanisms of Cu–Ag alloy fibers with high strength and high conductivity

材料科学 合金 微观结构 电阻率和电导率 抛光 晶界 复合材料 电镀 冶金 纤维 导电体 电导率 纹理(宇宙学) 电气工程 图层(电子) 图像(数学) 人工智能 计算机科学 工程类 物理化学 化学
作者
Liang Kong,X.L. Zhu,Z.B. Xing,Yongqin Chang,Hao Huang,Yu Shu,Z.X. Qi,Bin Wen,Penghui Li
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:895: 146219-146219 被引量:11
标识
DOI:10.1016/j.msea.2024.146219
摘要

Cu–Ag alloy fibers are known for their excellent electrical and thermal conductivity, and are widely used in various fields, such as electronics, transportation, and processing due to their low price and simple preparation process. Nevertheless, this trade-off relation between strength and electrical conductivity of Cu–Ag alloys restricts their scope of application. In order to prepare Cu–Ag alloy fibers with high strength and high electrical conductivity, three different processes: cold drawing, surface electrodeposition and electrolytic polishing, are investigated and comprehensively utilized. By comparing the evolution of microstructure and properties in Cu–Ag alloy fibers, along with the corresponding mechanisms for strengthening and conductivity, one most suitable process path is explored. Cold-drawing is utilized to reduce the grain size, which, in turn, enhances the strength of the fibers. Meanwhile, it refines the internal grains of the alloy by shearing and deflecting each other, ultimately resulting in a fiber texture along the drawing direction. The main contributors to the strength of Cu–Ag alloy fibers are dislocation strengthening, grain boundary strengthening, and texture strengthening. The slight difference is that for electrical conductivity, dislocation and grain boundary play a crucial role. Electrodeposition of copper on the fiber surface is an effective method for improving the electrical conductivity of the fiber, which is achieved by creating a dense conductive pathway on the surface of the fiber. However, this process leads to a reduction in strength. Therefore, electrolytic polishing is subsequently used to regulate the plating thickness in order to obtain Cu–Ag alloy fiber with synchronous increase of strength and electrical conductivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助降娄采纳,获得10
1秒前
正直酬海完成签到,获得积分10
1秒前
xiaop完成签到,获得积分10
2秒前
辉辉关注了科研通微信公众号
3秒前
tiandage发布了新的文献求助10
3秒前
4秒前
4秒前
666完成签到,获得积分10
5秒前
无花果应助老迟到的妙菱采纳,获得10
6秒前
ding应助Genius采纳,获得10
6秒前
刘娇娇完成签到,获得积分10
6秒前
领导范儿应助正直酬海采纳,获得10
6秒前
认真迎夏完成签到,获得积分10
7秒前
7秒前
NexusExplorer应助星河采纳,获得10
7秒前
俊逸的念桃完成签到,获得积分10
7秒前
哇咔咔完成签到,获得积分10
7秒前
7秒前
云子发布了新的文献求助10
7秒前
zcx完成签到 ,获得积分10
8秒前
小蘑菇应助ZZM采纳,获得10
8秒前
8秒前
9秒前
9秒前
Lucas应助haha采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
隐形曼青应助xu采纳,获得10
10秒前
Orange应助贝贝采纳,获得10
10秒前
卓一航完成签到,获得积分10
11秒前
11秒前
FashionBoy应助p65采纳,获得10
11秒前
11秒前
11秒前
孝择发布了新的文献求助10
11秒前
英姑应助cherrychou采纳,获得10
12秒前
12秒前
科研通AI6应助执着土豆采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577053
求助须知:如何正确求助?哪些是违规求助? 4662311
关于积分的说明 14740828
捐赠科研通 4602926
什么是DOI,文献DOI怎么找? 2526046
邀请新用户注册赠送积分活动 1495963
关于科研通互助平台的介绍 1465478