Revealing anodic multi-class bubble dynamics in PEMWE systems using deep learning and post-processing detection

气泡 班级(哲学) 动力学(音乐) 计算机科学 人工智能 生物系统 物理 声学 并行计算 生物
作者
Idriss Sinapan,Christophe Lin-Kwong-Chon,Cédric Damour,Amangoua Jean-Jacques Kadjo,Michel Benne
出处
期刊:Fuel [Elsevier BV]
卷期号:364: 131112-131112
标识
DOI:10.1016/j.fuel.2024.131112
摘要

Oxygen bubbles that emerge in the anodic side of a Proton Exchange Membrane Water Electrolyzer (PEMWE) can significantly decrease the efficiency of the system. Therefore, a deeper understanding of the bubble's behavior is crucial. However, this two-phase flow analysis is a challenging problem due to its complexity and remains a major scientific issue. In this paper, a fine-class deep learning detection tool is developed to tackle this issue. The proposed strategy is designed for the detection of three classes of bubbles: bubbly, slug, and stagnated. Based on these detections, several indicators are computed such as the number of bubbles or the covering rate. A high-density acquisition system coupled with a transparent anodic side PEMWE are used to capture anodic high-resolution bubble pictures. The proposed deep learning tool in combination with an image post-processing method carries out the detection of multiple bubble labels. Curve trends for the three different classes are obtained and are in concordance with the literature. For the first time, stagnated bubble dynamics are extracted from data. It is found that the water flow rate has no influence on stagnated bubbles covering rate, amount, and mean stagnated bubble size. However, increasing the current density decreases the covering rate and amount of stagnated bubbles which frees active areas. When the water flow rate increases, the global bubble covering rate decreases, nevertheless the amount of bubbles counter-intuitively increases. Thanks to the multi-class bubble detection, this phenomenon can be explained by the fact that slug amount decreases due to the non-coalescence phenomenon, and the bubbly amount increases. The developed tool is efficient and could be used to analyze bubble characteristics after modifying the PEMWE such as the porous transport layer, catalyst layer, or even the membrane.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安栾完成签到,获得积分10
1秒前
寒生完成签到,获得积分10
1秒前
2秒前
肖珂发布了新的文献求助10
2秒前
刘林美发布了新的文献求助10
4秒前
zz完成签到,获得积分10
4秒前
susu完成签到,获得积分10
6秒前
香蕉觅云应助嘞是举仔采纳,获得10
6秒前
8秒前
木子木子吱吱完成签到,获得积分10
8秒前
susu发布了新的文献求助30
9秒前
蔡忠英发布了新的文献求助10
10秒前
迷路访云完成签到,获得积分10
10秒前
11秒前
12秒前
BetterH完成签到 ,获得积分10
12秒前
无花果应助wow采纳,获得10
12秒前
wanci应助7iy采纳,获得10
13秒前
loong发布了新的文献求助10
17秒前
深情安青应助白桦林泪采纳,获得10
17秒前
19秒前
米米米完成签到 ,获得积分10
21秒前
JX完成签到 ,获得积分10
22秒前
23秒前
23秒前
锅包肉完成签到 ,获得积分10
23秒前
华仔应助loong采纳,获得10
24秒前
wow发布了新的文献求助10
25秒前
包容的鞋垫完成签到,获得积分10
26秒前
bkagyin应助congenialboy采纳,获得10
26秒前
搜集达人应助刘林美采纳,获得10
27秒前
张瑞雪完成签到 ,获得积分10
27秒前
hanshu发布了新的文献求助10
28秒前
30秒前
wow完成签到,获得积分10
31秒前
32秒前
牢孙完成签到,获得积分10
35秒前
嘞是举仔发布了新的文献求助10
36秒前
蔡忠英完成签到,获得积分10
37秒前
酷波er应助风车采纳,获得10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176