Revealing anodic multi-class bubble dynamics in PEMWE systems using deep learning and post-processing detection

气泡 班级(哲学) 动力学(音乐) 计算机科学 人工智能 生物系统 物理 声学 并行计算 生物
作者
Idriss Sinapan,Christophe Lin-Kwong-Chon,Cédric Damour,Amangoua Jean-Jacques Kadjo,Michel Benne
出处
期刊:Fuel [Elsevier BV]
卷期号:364: 131112-131112
标识
DOI:10.1016/j.fuel.2024.131112
摘要

Oxygen bubbles that emerge in the anodic side of a Proton Exchange Membrane Water Electrolyzer (PEMWE) can significantly decrease the efficiency of the system. Therefore, a deeper understanding of the bubble's behavior is crucial. However, this two-phase flow analysis is a challenging problem due to its complexity and remains a major scientific issue. In this paper, a fine-class deep learning detection tool is developed to tackle this issue. The proposed strategy is designed for the detection of three classes of bubbles: bubbly, slug, and stagnated. Based on these detections, several indicators are computed such as the number of bubbles or the covering rate. A high-density acquisition system coupled with a transparent anodic side PEMWE are used to capture anodic high-resolution bubble pictures. The proposed deep learning tool in combination with an image post-processing method carries out the detection of multiple bubble labels. Curve trends for the three different classes are obtained and are in concordance with the literature. For the first time, stagnated bubble dynamics are extracted from data. It is found that the water flow rate has no influence on stagnated bubbles covering rate, amount, and mean stagnated bubble size. However, increasing the current density decreases the covering rate and amount of stagnated bubbles which frees active areas. When the water flow rate increases, the global bubble covering rate decreases, nevertheless the amount of bubbles counter-intuitively increases. Thanks to the multi-class bubble detection, this phenomenon can be explained by the fact that slug amount decreases due to the non-coalescence phenomenon, and the bubbly amount increases. The developed tool is efficient and could be used to analyze bubble characteristics after modifying the PEMWE such as the porous transport layer, catalyst layer, or even the membrane.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tianzml0发布了新的文献求助10
刚刚
gfsuen发布了新的文献求助10
刚刚
大模型应助潇洒的血茗采纳,获得10
刚刚
自觉书琴完成签到 ,获得积分10
1秒前
1秒前
传奇3应助彭彭yr采纳,获得10
1秒前
李李完成签到 ,获得积分10
2秒前
奋斗靖仇完成签到 ,获得积分10
2秒前
3秒前
忧郁衬衫完成签到 ,获得积分10
3秒前
捏捏猫猫完成签到 ,获得积分10
4秒前
5165asd完成签到,获得积分10
4秒前
4秒前
mildJYY完成签到,获得积分10
5秒前
共享精神应助叫我富婆儿采纳,获得10
6秒前
兜有米发布了新的文献求助30
6秒前
科研通AI6应助DYW采纳,获得10
6秒前
量子星尘发布了新的文献求助150
8秒前
8秒前
coco发布了新的文献求助10
8秒前
8秒前
紫色的云完成签到,获得积分10
9秒前
9秒前
18746005898完成签到 ,获得积分10
10秒前
10秒前
甜甜圈完成签到,获得积分10
10秒前
12秒前
K先生完成签到,获得积分10
12秒前
13秒前
加缪应助5165asd采纳,获得10
13秒前
彭彭yr发布了新的文献求助10
14秒前
14秒前
dingdign发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
羊肉泡馍完成签到,获得积分10
17秒前
17秒前
17秒前
Maqian发布了新的文献求助10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5129997
求助须知:如何正确求助?哪些是违规求助? 4332394
关于积分的说明 13497489
捐赠科研通 4168782
什么是DOI,文献DOI怎么找? 2285245
邀请新用户注册赠送积分活动 1286246
关于科研通互助平台的介绍 1227139