Revealing anodic multi-class bubble dynamics in PEMWE systems using deep learning and post-processing detection

气泡 班级(哲学) 动力学(音乐) 计算机科学 人工智能 生物系统 物理 声学 生物 并行计算
作者
Idriss Sinapan,Christophe Lin-Kwong-Chon,Cédric Damour,Amangoua Jean-Jacques Kadjo,Michel Benne
出处
期刊:Fuel [Elsevier]
卷期号:364: 131112-131112
标识
DOI:10.1016/j.fuel.2024.131112
摘要

Oxygen bubbles that emerge in the anodic side of a Proton Exchange Membrane Water Electrolyzer (PEMWE) can significantly decrease the efficiency of the system. Therefore, a deeper understanding of the bubble's behavior is crucial. However, this two-phase flow analysis is a challenging problem due to its complexity and remains a major scientific issue. In this paper, a fine-class deep learning detection tool is developed to tackle this issue. The proposed strategy is designed for the detection of three classes of bubbles: bubbly, slug, and stagnated. Based on these detections, several indicators are computed such as the number of bubbles or the covering rate. A high-density acquisition system coupled with a transparent anodic side PEMWE are used to capture anodic high-resolution bubble pictures. The proposed deep learning tool in combination with an image post-processing method carries out the detection of multiple bubble labels. Curve trends for the three different classes are obtained and are in concordance with the literature. For the first time, stagnated bubble dynamics are extracted from data. It is found that the water flow rate has no influence on stagnated bubbles covering rate, amount, and mean stagnated bubble size. However, increasing the current density decreases the covering rate and amount of stagnated bubbles which frees active areas. When the water flow rate increases, the global bubble covering rate decreases, nevertheless the amount of bubbles counter-intuitively increases. Thanks to the multi-class bubble detection, this phenomenon can be explained by the fact that slug amount decreases due to the non-coalescence phenomenon, and the bubbly amount increases. The developed tool is efficient and could be used to analyze bubble characteristics after modifying the PEMWE such as the porous transport layer, catalyst layer, or even the membrane.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
i3utter完成签到,获得积分10
刚刚
SUNXI完成签到,获得积分10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
六六六应助科研通管家采纳,获得10
刚刚
桐桐应助心灵美剑封采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
Jared应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
公龟应助科研通管家采纳,获得10
1秒前
Akim应助潇洒的h采纳,获得10
1秒前
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
科研通AI6应助周非王采纳,获得30
1秒前
treetree的应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
仁爱忆曼完成签到,获得积分10
1秒前
1秒前
1秒前
xwhite完成签到,获得积分10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
Jared应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
莱菲应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
LLLLL完成签到 ,获得积分10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
SciGPT应助meng采纳,获得50
2秒前
liu123456完成签到,获得积分10
2秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
2秒前
冷艳的二娘完成签到,获得积分10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665717
求助须知:如何正确求助?哪些是违规求助? 4877979
关于积分的说明 15115220
捐赠科研通 4824955
什么是DOI,文献DOI怎么找? 2582994
邀请新用户注册赠送积分活动 1537014
关于科研通互助平台的介绍 1495441