Revealing anodic multi-class bubble dynamics in PEMWE systems using deep learning and post-processing detection

气泡 班级(哲学) 动力学(音乐) 计算机科学 人工智能 生物系统 物理 声学 生物 并行计算
作者
Idriss Sinapan,Christophe Lin-Kwong-Chon,Cédric Damour,Amangoua Jean-Jacques Kadjo,Michel Benne
出处
期刊:Fuel [Elsevier]
卷期号:364: 131112-131112
标识
DOI:10.1016/j.fuel.2024.131112
摘要

Oxygen bubbles that emerge in the anodic side of a Proton Exchange Membrane Water Electrolyzer (PEMWE) can significantly decrease the efficiency of the system. Therefore, a deeper understanding of the bubble's behavior is crucial. However, this two-phase flow analysis is a challenging problem due to its complexity and remains a major scientific issue. In this paper, a fine-class deep learning detection tool is developed to tackle this issue. The proposed strategy is designed for the detection of three classes of bubbles: bubbly, slug, and stagnated. Based on these detections, several indicators are computed such as the number of bubbles or the covering rate. A high-density acquisition system coupled with a transparent anodic side PEMWE are used to capture anodic high-resolution bubble pictures. The proposed deep learning tool in combination with an image post-processing method carries out the detection of multiple bubble labels. Curve trends for the three different classes are obtained and are in concordance with the literature. For the first time, stagnated bubble dynamics are extracted from data. It is found that the water flow rate has no influence on stagnated bubbles covering rate, amount, and mean stagnated bubble size. However, increasing the current density decreases the covering rate and amount of stagnated bubbles which frees active areas. When the water flow rate increases, the global bubble covering rate decreases, nevertheless the amount of bubbles counter-intuitively increases. Thanks to the multi-class bubble detection, this phenomenon can be explained by the fact that slug amount decreases due to the non-coalescence phenomenon, and the bubbly amount increases. The developed tool is efficient and could be used to analyze bubble characteristics after modifying the PEMWE such as the porous transport layer, catalyst layer, or even the membrane.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
3秒前
3秒前
笋尖266发布了新的文献求助10
4秒前
充电宝应助森气采纳,获得10
5秒前
棉袄完成签到 ,获得积分10
5秒前
现在到未来完成签到,获得积分10
6秒前
bbh发布了新的文献求助10
6秒前
6秒前
丘比特应助ying731采纳,获得10
7秒前
wind发布了新的文献求助50
7秒前
cocolu应助qikkk采纳,获得30
9秒前
B站萧亚轩发布了新的文献求助10
9秒前
JaydenRICH关注了科研通微信公众号
12秒前
Ava应助TianY天翊采纳,获得10
12秒前
von完成签到,获得积分10
12秒前
Zcccjy完成签到 ,获得积分10
15秒前
18秒前
19秒前
19秒前
Ava应助零零散散采纳,获得10
19秒前
阿月完成签到,获得积分10
20秒前
20秒前
CYANjane完成签到,获得积分10
21秒前
笋尖266完成签到,获得积分10
21秒前
李爱国应助yyy采纳,获得10
21秒前
大气荟发布了新的文献求助10
22秒前
23秒前
是你的雨发布了新的文献求助10
23秒前
25秒前
TianY天翊发布了新的文献求助10
25秒前
布布爱吃炸鸡完成签到,获得积分10
26秒前
daihq3发布了新的文献求助10
27秒前
鱼雁发布了新的文献求助10
28秒前
28秒前
CodeCraft应助xl采纳,获得10
28秒前
薛洁洁的小糖应助laohu采纳,获得10
28秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443647
求助须知:如何正确求助?哪些是违规求助? 3039898
关于积分的说明 8978440
捐赠科研通 2728341
什么是DOI,文献DOI怎么找? 1496490
科研通“疑难数据库(出版商)”最低求助积分说明 691648
邀请新用户注册赠送积分活动 689213