Revealing anodic multi-class bubble dynamics in PEMWE systems using deep learning and post-processing detection

气泡 班级(哲学) 动力学(音乐) 计算机科学 人工智能 生物系统 物理 声学 生物 并行计算
作者
Idriss Sinapan,Christophe Lin-Kwong-Chon,Cédric Damour,Amangoua Jean-Jacques Kadjo,Michel Benne
出处
期刊:Fuel [Elsevier]
卷期号:364: 131112-131112
标识
DOI:10.1016/j.fuel.2024.131112
摘要

Oxygen bubbles that emerge in the anodic side of a Proton Exchange Membrane Water Electrolyzer (PEMWE) can significantly decrease the efficiency of the system. Therefore, a deeper understanding of the bubble's behavior is crucial. However, this two-phase flow analysis is a challenging problem due to its complexity and remains a major scientific issue. In this paper, a fine-class deep learning detection tool is developed to tackle this issue. The proposed strategy is designed for the detection of three classes of bubbles: bubbly, slug, and stagnated. Based on these detections, several indicators are computed such as the number of bubbles or the covering rate. A high-density acquisition system coupled with a transparent anodic side PEMWE are used to capture anodic high-resolution bubble pictures. The proposed deep learning tool in combination with an image post-processing method carries out the detection of multiple bubble labels. Curve trends for the three different classes are obtained and are in concordance with the literature. For the first time, stagnated bubble dynamics are extracted from data. It is found that the water flow rate has no influence on stagnated bubbles covering rate, amount, and mean stagnated bubble size. However, increasing the current density decreases the covering rate and amount of stagnated bubbles which frees active areas. When the water flow rate increases, the global bubble covering rate decreases, nevertheless the amount of bubbles counter-intuitively increases. Thanks to the multi-class bubble detection, this phenomenon can be explained by the fact that slug amount decreases due to the non-coalescence phenomenon, and the bubbly amount increases. The developed tool is efficient and could be used to analyze bubble characteristics after modifying the PEMWE such as the porous transport layer, catalyst layer, or even the membrane.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好焦完成签到,获得积分10
刚刚
麦子完成签到 ,获得积分10
刚刚
LC完成签到 ,获得积分10
1秒前
1秒前
难过的初柔应助paopao采纳,获得10
2秒前
zxcvb发布了新的文献求助30
2秒前
星辰大海应助tesla采纳,获得10
3秒前
madison发布了新的文献求助10
3秒前
zoey完成签到,获得积分10
3秒前
黄嘟嘟完成签到,获得积分10
3秒前
NICKPLZ完成签到,获得积分10
3秒前
小鬼完成签到,获得积分10
4秒前
WANGGE完成签到 ,获得积分10
4秒前
小巧凝丹完成签到,获得积分10
6秒前
6秒前
funny发布了新的文献求助10
7秒前
7秒前
大模型应助芝士就是力量采纳,获得10
8秒前
田様应助小闲鱼采纳,获得10
8秒前
活泼凌青完成签到,获得积分10
8秒前
小糊涂仙完成签到,获得积分10
8秒前
科研通AI5应助王悦采纳,获得10
9秒前
杨青月完成签到,获得积分10
9秒前
上官若男应助yuncong323采纳,获得10
9秒前
dandan完成签到,获得积分10
10秒前
风趣的天问完成签到 ,获得积分10
10秒前
yi完成签到,获得积分10
10秒前
姚怜南发布了新的文献求助10
10秒前
王二哈完成签到,获得积分10
11秒前
糊涂的马里奥完成签到 ,获得积分10
11秒前
11秒前
liutg24完成签到,获得积分10
12秒前
Honey完成签到,获得积分10
12秒前
waoller1完成签到,获得积分10
12秒前
灵巧高山应助paopao采纳,获得10
12秒前
zhouxiuman完成签到,获得积分10
12秒前
JJ完成签到,获得积分10
12秒前
打打应助浮生采纳,获得10
12秒前
yep发布了新的文献求助10
13秒前
无辜念文完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910