ICycle-GAN: Improved cycle generative adversarial networks for liver medical image generation

计算机科学 图像(数学) 特征(语言学) 图像质量 计算机辅助设计 人工智能 模式识别(心理学) 转化(遗传学) 过程(计算) 编码器 哲学 语言学 生物化学 化学 工程制图 工程类 基因 操作系统
作者
Huiling Chen,Hongping Lin,Wei Zhang,Wang Chen,Zonglai Zhou,Ali Asghar Heidari,Huiling Chen,Xu Guohui
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:92: 106100-106100 被引量:8
标识
DOI:10.1016/j.bspc.2024.106100
摘要

A high-performance computer-aided diagnosis (CAD) system can enhance the accuracy of liver cancer diagnosis, enabling early detection, diagnosis, and treatment. However, the availability of liver medical image datasets for training CAD systems is limited, and the existing augmentation methods generate images of lower quality, thereby limiting the performance of CAD systems. Therefore, this paper proposes a high-quality liver medical image generation algorithm based on an improved Cycle generative adversarial network (ICycle-GAN). Firstly, a correction network module based on an encoder-decoder structure is introduced into a Cycle generative adversarial network (Cycle-GAN). This module incorporates residual connections to efficiently extract latent feature representations from medical images and optimize them to generate higher-quality images. Secondly, a new loss function is embedded in the network based on the principle of loss correction. This loss function treats blurry images as noisy labels, transforming the unsupervised learning process of medical image transformation into a semi-supervised learning process. Finally, in the comparative experiments, the objective evaluation metrics including structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), normalized mean absolute error (NMAE) and Fréchet Inception Distance (FID) for the generated liver computer tomography (CT) and magnetic resonance imaging (MRI) images by our proposed algorithm outperform the four mainstream medical image generation algorithms currently available. Moreover, the subjective visual quality of the generated images is also superior to that of the compared methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Ebony发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助30
4秒前
李健应助nkpdsy采纳,获得10
4秒前
6秒前
6秒前
6秒前
斯文尔阳完成签到,获得积分10
6秒前
8秒前
cyh完成签到,获得积分10
8秒前
英姑应助文艺的枫叶采纳,获得10
8秒前
irfanshan发布了新的文献求助10
10秒前
LHF发布了新的文献求助10
11秒前
11秒前
stone完成签到,获得积分10
12秒前
可爱的函函应助Cookies采纳,获得10
13秒前
raziel完成签到,获得积分10
15秒前
123完成签到 ,获得积分10
15秒前
15秒前
慕青应助Ebony采纳,获得10
16秒前
高兴的易形完成签到,获得积分10
18秒前
荞面小肉包完成签到,获得积分10
19秒前
19秒前
小二郎应助杨仔采纳,获得10
21秒前
甜美的秋凌完成签到,获得积分10
21秒前
da发布了新的文献求助10
22秒前
xiaoyu应助一拳超人采纳,获得10
22秒前
qiukeyingying发布了新的文献求助10
23秒前
苏大脸完成签到,获得积分10
24秒前
24秒前
25秒前
华仔应助胡一把采纳,获得30
25秒前
25秒前
viper3完成签到,获得积分10
27秒前
27秒前
Hello应助苏大脸采纳,获得10
29秒前
负责莆发布了新的文献求助10
30秒前
31秒前
31秒前
34秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979791
求助须知:如何正确求助?哪些是违规求助? 3523813
关于积分的说明 11219007
捐赠科研通 3261341
什么是DOI,文献DOI怎么找? 1800573
邀请新用户注册赠送积分活动 879179
科研通“疑难数据库(出版商)”最低求助积分说明 807193