ICycle-GAN: Improved cycle generative adversarial networks for liver medical image generation

计算机科学 图像(数学) 特征(语言学) 图像质量 计算机辅助设计 人工智能 模式识别(心理学) 转化(遗传学) 过程(计算) 编码器 工程类 工程制图 化学 哲学 操作系统 基因 生物化学 语言学
作者
Huiling Chen,Hongping Lin,Wei Zhang,Wang Chen,Zonglai Zhou,Ali Asghar Heidari,Huiling Chen,Xu Guohui
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:92: 106100-106100 被引量:36
标识
DOI:10.1016/j.bspc.2024.106100
摘要

A high-performance computer-aided diagnosis (CAD) system can enhance the accuracy of liver cancer diagnosis, enabling early detection, diagnosis, and treatment. However, the availability of liver medical image datasets for training CAD systems is limited, and the existing augmentation methods generate images of lower quality, thereby limiting the performance of CAD systems. Therefore, this paper proposes a high-quality liver medical image generation algorithm based on an improved Cycle generative adversarial network (ICycle-GAN). Firstly, a correction network module based on an encoder-decoder structure is introduced into a Cycle generative adversarial network (Cycle-GAN). This module incorporates residual connections to efficiently extract latent feature representations from medical images and optimize them to generate higher-quality images. Secondly, a new loss function is embedded in the network based on the principle of loss correction. This loss function treats blurry images as noisy labels, transforming the unsupervised learning process of medical image transformation into a semi-supervised learning process. Finally, in the comparative experiments, the objective evaluation metrics including structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), normalized mean absolute error (NMAE) and Fréchet Inception Distance (FID) for the generated liver computer tomography (CT) and magnetic resonance imaging (MRI) images by our proposed algorithm outperform the four mainstream medical image generation algorithms currently available. Moreover, the subjective visual quality of the generated images is also superior to that of the compared methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dandelion完成签到,获得积分10
1秒前
魏猛完成签到,获得积分10
1秒前
太空发布了新的文献求助10
1秒前
SciGPT应助guojingjing采纳,获得10
2秒前
紫婧完成签到,获得积分10
2秒前
Azur1完成签到 ,获得积分10
2秒前
吴天姿发布了新的文献求助200
2秒前
忐忑的红牛完成签到,获得积分10
2秒前
erhui发布了新的文献求助10
2秒前
yly完成签到 ,获得积分10
2秒前
小曹完成签到,获得积分10
3秒前
seattle发布了新的文献求助10
3秒前
科研巨额完成签到,获得积分10
3秒前
xupt唐僧完成签到,获得积分10
3秒前
houl发布了新的文献求助10
4秒前
科研志发布了新的文献求助20
5秒前
6秒前
研友_ndv5j8完成签到,获得积分10
6秒前
苹什么应助白昼の月采纳,获得10
7秒前
8秒前
太空完成签到,获得积分10
8秒前
9秒前
leemiii完成签到 ,获得积分10
10秒前
10秒前
10秒前
纪你巴发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
zhuzhu发布了新的文献求助10
13秒前
刘英岑发布了新的文献求助10
13秒前
kelakola完成签到,获得积分10
14秒前
14秒前
恰逢发布了新的文献求助10
14秒前
科研通AI6应助研友_Lmg01Z采纳,获得10
14秒前
guojingjing发布了新的文献求助10
14秒前
15秒前
赘婿应助monkey采纳,获得10
15秒前
15秒前
科研之家完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812