Content-based medical image retrieval using deep learning-based features and hybrid meta-heuristic optimization

计算机科学 元启发式 人工智能 启发式 图像(数学) 模式识别(心理学) 基于内容的图像检索 深度学习 图像检索 机器学习 算法
作者
Rani Shetty,Vandana S. Bhat,Jagadeesh Pujari
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:92: 106069-106069 被引量:3
标识
DOI:10.1016/j.bspc.2024.106069
摘要

Medical imaging is essential to the medical profession because it gives physicians access to crucial data on interior body structures for clinical analysis and treatment decisions that help them identify and cure a wide range of illnesses. A significant collection of medical photos has been created as a result of the rapid increase in medical diagnoses, yet it can be difficult to locate similar medical images within such a large database. This article describes a technique for deep learning-based convolutional neural network (CNN) -based Content-Based Medical Image Retrieval (CBMIR) to deal with this problem as well as Modified Cosine Similarity (MCS)-based matching. The aim of this approach is to enhance the accuracy and efficiency of CBMIR by utilizing the power of deep learning and advanced optimization techniques. The proposed model includes two major phases: (a) the training stage, and (b) the testing stage. In the training stage, the pre-processing, feature extraction, and optimal feature selection process take place. The database images are pre-processed using the Gaussian filter, Contrast Limited Adaptive Histogram Equalization (CLAHE), and Gaussian smoothing. Then, the deep features of database images are extracted using the Inception V3 CNN model and VGG19, respectively. The extracted features are combined, and the optimal features are selected from them. This selection is done through the new Coyote-Moth Optimization Algorithm (CMOA). This CMOA model is the conceptual amalgamation of the standard Moth-flame optimization (MFO) and coyote optimization Algorithm (COA).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小土豆发布了新的文献求助10
刚刚
代杰居然发布了新的文献求助10
1秒前
1秒前
CodeCraft应助Thi采纳,获得10
1秒前
冷静的访天完成签到 ,获得积分10
2秒前
泡泡发布了新的文献求助10
3秒前
3秒前
4秒前
wen发布了新的文献求助10
4秒前
5秒前
5秒前
xia完成签到,获得积分10
6秒前
qihao309发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
阅读发布了新的文献求助200
7秒前
123完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
小蘑菇应助faaa采纳,获得10
8秒前
FashionBoy应助康康采纳,获得10
9秒前
孤独元容发布了新的文献求助10
9秒前
mango发布了新的文献求助10
9秒前
zhao完成签到,获得积分10
9秒前
无私书雪发布了新的文献求助30
9秒前
9秒前
9秒前
精明念寒完成签到,获得积分10
9秒前
冷艳的白秋完成签到,获得积分10
10秒前
11秒前
feilei发布了新的文献求助10
11秒前
13秒前
隐形曼青应助jerry采纳,获得10
13秒前
lili完成签到,获得积分20
14秒前
qihao309完成签到,获得积分10
14秒前
luha完成签到,获得积分10
14秒前
叽里咕卢发布了新的文献求助10
14秒前
star发布了新的文献求助10
15秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3054832
求助须知:如何正确求助?哪些是违规求助? 2711702
关于积分的说明 7427649
捐赠科研通 2356261
什么是DOI,文献DOI怎么找? 1247983
科研通“疑难数据库(出版商)”最低求助积分说明 606566
版权声明 596083