Content-based medical image retrieval using deep learning-based features and hybrid meta-heuristic optimization

计算机科学 元启发式 人工智能 启发式 图像(数学) 模式识别(心理学) 基于内容的图像检索 深度学习 图像检索 机器学习 算法
作者
Rani Shetty,Vandana S. Bhat,Jagadeesh Pujari
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:92: 106069-106069 被引量:3
标识
DOI:10.1016/j.bspc.2024.106069
摘要

Medical imaging is essential to the medical profession because it gives physicians access to crucial data on interior body structures for clinical analysis and treatment decisions that help them identify and cure a wide range of illnesses. A significant collection of medical photos has been created as a result of the rapid increase in medical diagnoses, yet it can be difficult to locate similar medical images within such a large database. This article describes a technique for deep learning-based convolutional neural network (CNN) -based Content-Based Medical Image Retrieval (CBMIR) to deal with this problem as well as Modified Cosine Similarity (MCS)-based matching. The aim of this approach is to enhance the accuracy and efficiency of CBMIR by utilizing the power of deep learning and advanced optimization techniques. The proposed model includes two major phases: (a) the training stage, and (b) the testing stage. In the training stage, the pre-processing, feature extraction, and optimal feature selection process take place. The database images are pre-processed using the Gaussian filter, Contrast Limited Adaptive Histogram Equalization (CLAHE), and Gaussian smoothing. Then, the deep features of database images are extracted using the Inception V3 CNN model and VGG19, respectively. The extracted features are combined, and the optimal features are selected from them. This selection is done through the new Coyote-Moth Optimization Algorithm (CMOA). This CMOA model is the conceptual amalgamation of the standard Moth-flame optimization (MFO) and coyote optimization Algorithm (COA).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
junzilan发布了新的文献求助10
1秒前
ZL发布了新的文献求助10
1秒前
1秒前
亻鱼完成签到,获得积分10
1秒前
超级蘑菇完成签到 ,获得积分10
2秒前
2秒前
2秒前
congguitar完成签到,获得积分10
2秒前
3秒前
limof完成签到,获得积分20
3秒前
跳跃聪健发布了新的文献求助10
3秒前
168521kf完成签到,获得积分10
3秒前
4秒前
Avatar完成签到,获得积分10
4秒前
4秒前
小田完成签到,获得积分10
5秒前
JJJ应助大气沅采纳,获得10
5秒前
6秒前
kydd驳回了桐桐应助
6秒前
7秒前
7秒前
7秒前
英俊的铭应助洛尚采纳,获得10
7秒前
8秒前
在水一方应助Harlotte采纳,获得10
8秒前
廖天佑完成签到,获得积分0
8秒前
SweepingMonk应助梁小鑫采纳,获得10
8秒前
DTBTY完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
JACK发布了新的文献求助10
10秒前
小宋同学不能怂完成签到 ,获得积分10
10秒前
Peng丶Young完成签到,获得积分10
10秒前
10秒前
学术新星完成签到,获得积分10
10秒前
传奇3应助欢欢采纳,获得10
11秒前
littlewhite发布了新的文献求助30
11秒前
木子发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740