Content-based medical image retrieval using deep learning-based features and hybrid meta-heuristic optimization

计算机科学 元启发式 人工智能 启发式 图像(数学) 模式识别(心理学) 基于内容的图像检索 深度学习 图像检索 机器学习 算法
作者
Rani Shetty,Vandana S. Bhat,Jagadeesh Pujari
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:92: 106069-106069 被引量:3
标识
DOI:10.1016/j.bspc.2024.106069
摘要

Medical imaging is essential to the medical profession because it gives physicians access to crucial data on interior body structures for clinical analysis and treatment decisions that help them identify and cure a wide range of illnesses. A significant collection of medical photos has been created as a result of the rapid increase in medical diagnoses, yet it can be difficult to locate similar medical images within such a large database. This article describes a technique for deep learning-based convolutional neural network (CNN) -based Content-Based Medical Image Retrieval (CBMIR) to deal with this problem as well as Modified Cosine Similarity (MCS)-based matching. The aim of this approach is to enhance the accuracy and efficiency of CBMIR by utilizing the power of deep learning and advanced optimization techniques. The proposed model includes two major phases: (a) the training stage, and (b) the testing stage. In the training stage, the pre-processing, feature extraction, and optimal feature selection process take place. The database images are pre-processed using the Gaussian filter, Contrast Limited Adaptive Histogram Equalization (CLAHE), and Gaussian smoothing. Then, the deep features of database images are extracted using the Inception V3 CNN model and VGG19, respectively. The extracted features are combined, and the optimal features are selected from them. This selection is done through the new Coyote-Moth Optimization Algorithm (CMOA). This CMOA model is the conceptual amalgamation of the standard Moth-flame optimization (MFO) and coyote optimization Algorithm (COA).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小李完成签到,获得积分10
刚刚
代刚良发布了新的文献求助10
刚刚
小吕完成签到 ,获得积分10
刚刚
小肚肚完成签到,获得积分10
刚刚
研友_Z7Xvl8完成签到,获得积分10
刚刚
Jasper应助gx采纳,获得10
刚刚
隋阳完成签到,获得积分10
1秒前
wsy发布了新的文献求助30
1秒前
1秒前
你是我的小月亮完成签到 ,获得积分10
1秒前
毕星团发布了新的文献求助10
1秒前
1秒前
王金娥完成签到,获得积分10
1秒前
2秒前
2秒前
哎呀完成签到 ,获得积分10
2秒前
luozibing完成签到 ,获得积分10
2秒前
zlzhang完成签到,获得积分10
2秒前
wangdada完成签到,获得积分10
2秒前
TiAmo完成签到 ,获得积分10
2秒前
2秒前
刘依梦完成签到 ,获得积分10
3秒前
酷波er应助科研迪采纳,获得10
3秒前
潘健康完成签到,获得积分10
4秒前
4秒前
那些兔儿完成签到 ,获得积分10
5秒前
111完成签到,获得积分20
5秒前
还原糖发布了新的文献求助10
5秒前
桐桐应助扶瑶可接采纳,获得10
6秒前
俏皮熊猫发布了新的文献求助10
6秒前
tongzehui完成签到 ,获得积分10
7秒前
7秒前
周一凡完成签到,获得积分10
7秒前
传奇3应助Adler采纳,获得10
7秒前
三号技师完成签到,获得积分10
7秒前
Jero发布了新的文献求助10
7秒前
8秒前
轻松致远关注了科研通微信公众号
8秒前
Tiffan完成签到,获得积分10
8秒前
稳重海豚完成签到,获得积分10
8秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3249411
求助须知:如何正确求助?哪些是违规求助? 2892704
关于积分的说明 8273386
捐赠科研通 2560931
什么是DOI,文献DOI怎么找? 1389354
科研通“疑难数据库(出版商)”最低求助积分说明 651164
邀请新用户注册赠送积分活动 627958