Content-based medical image retrieval using deep learning-based features and hybrid meta-heuristic optimization

计算机科学 元启发式 人工智能 启发式 图像(数学) 模式识别(心理学) 基于内容的图像检索 深度学习 图像检索 机器学习 算法
作者
Rani Shetty,Vandana S. Bhat,Jagadeesh Pujari
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:92: 106069-106069 被引量:3
标识
DOI:10.1016/j.bspc.2024.106069
摘要

Medical imaging is essential to the medical profession because it gives physicians access to crucial data on interior body structures for clinical analysis and treatment decisions that help them identify and cure a wide range of illnesses. A significant collection of medical photos has been created as a result of the rapid increase in medical diagnoses, yet it can be difficult to locate similar medical images within such a large database. This article describes a technique for deep learning-based convolutional neural network (CNN) -based Content-Based Medical Image Retrieval (CBMIR) to deal with this problem as well as Modified Cosine Similarity (MCS)-based matching. The aim of this approach is to enhance the accuracy and efficiency of CBMIR by utilizing the power of deep learning and advanced optimization techniques. The proposed model includes two major phases: (a) the training stage, and (b) the testing stage. In the training stage, the pre-processing, feature extraction, and optimal feature selection process take place. The database images are pre-processed using the Gaussian filter, Contrast Limited Adaptive Histogram Equalization (CLAHE), and Gaussian smoothing. Then, the deep features of database images are extracted using the Inception V3 CNN model and VGG19, respectively. The extracted features are combined, and the optimal features are selected from them. This selection is done through the new Coyote-Moth Optimization Algorithm (CMOA). This CMOA model is the conceptual amalgamation of the standard Moth-flame optimization (MFO) and coyote optimization Algorithm (COA).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Caism发布了新的文献求助10
2秒前
华仔应助Pidan采纳,获得10
2秒前
阔达的无剑完成签到,获得积分10
3秒前
Tony完成签到,获得积分10
3秒前
5秒前
6秒前
18岁中二少年完成签到,获得积分10
6秒前
ozz完成签到,获得积分10
6秒前
咻咻发布了新的文献求助10
7秒前
zhumeinv完成签到 ,获得积分10
7秒前
橙子发布了新的文献求助10
7秒前
Limerencia完成签到,获得积分10
8秒前
朱伶可发布了新的文献求助10
9秒前
10秒前
11秒前
jerry完成签到,获得积分10
11秒前
11秒前
无花果应助简单的诗槐采纳,获得10
11秒前
12秒前
菠萝派发布了新的文献求助10
13秒前
shuaige发布了新的文献求助10
13秒前
hjy完成签到,获得积分10
14秒前
14秒前
YXYWZMSZ发布了新的文献求助10
16秒前
16秒前
香蕉觅云应助IceT采纳,获得10
16秒前
18秒前
18秒前
Lxk发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
20秒前
Emma发布了新的文献求助10
21秒前
细腻千秋完成签到 ,获得积分10
21秒前
21秒前
21秒前
林见清发布了新的文献求助10
22秒前
24秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956069
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107074
捐赠科研通 3232847
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870396
科研通“疑难数据库(出版商)”最低求助积分说明 802019