MOF-on-MOF-derived CuO@In2O3 s-scheme heterojunction with core–shell structure for efficient photocatalytic CO2 reduction

光催化 异质结 还原(数学) 方案(数学) 壳体(结构) 材料科学 化学工程 纳米技术 化学 光电子学 工程类 数学 催化作用 复合材料 几何学 数学分析 生物化学
作者
Xing Liu,Yuhan Wu,Yudong Li,Xiaohui Yang,Qinghai Ma,Juhua Luo
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:485: 149855-149855 被引量:13
标识
DOI:10.1016/j.cej.2024.149855
摘要

Herein, a MOF-on-MOF-derived In2O3 nanosheets encapsulating CuO ortho-octahedral core–shell structure CuO@In2O3 S-Scheme heterojunction composite was designed and prepared by a new strategy of interfacial engineering integrating optical and catalytic activity centers, which endowed with the catalyst's dual properties of both highly efficient light absorption and charge separation. The In2O3 shell wraps around the CuO core in a tight coaxial contact, allowing them have the largest contact surface thus effectively promoting the transport of electrons and holes separated at the interface. More importantly, CuO@In2O3 formed a binuclear center could enhance the CO2 adsorption to facilitate the subsequent catalytic reaction and promote the charge transfer through Cu-O-In bonds. The successful construction of S-scheme heterojunction not only promotes the spatial separation of electron-hole pairs, but also maintains the strongest redox potentials of CuO and In2O3 at the conduction and valence band positions. Notably, the intermediates in the CO2 photoreduction process were probed by in situ infrared spectroscopy and a possible photocatalytic mechanism was hypothesized. Under visible light irradiation, the CuO@In2O3 rates of photocatalytic reduction of CO2 to produce CH4 and CO were 190.32 μmol g−1h−1 and 500.46 μmol g−1h−1, which are 2.1, 10.3 times and 2.4, 7.9 times higher than pristine CuO and In2O3, respectively. This work provides a feasible strategy for the design and synthesis of binuclear-centered photocatalysts with interfacial engineered modulation and application to the photocatalytic reduction of CO2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
喃义完成签到,获得积分10
1秒前
3秒前
3秒前
糖七泡泡完成签到 ,获得积分10
3秒前
SciGPT应助123456采纳,获得10
3秒前
禅依完成签到,获得积分10
4秒前
nn完成签到 ,获得积分10
4秒前
4秒前
乐观海云发布了新的文献求助10
5秒前
5秒前
欣慰秋蝶发布了新的文献求助10
6秒前
7秒前
悦耳的芒果完成签到,获得积分10
7秒前
苏书白应助唯有采纳,获得10
7秒前
自然谷波完成签到,获得积分10
9秒前
9秒前
善学以致用应助淡淡十三采纳,获得10
9秒前
chen完成签到,获得积分10
9秒前
123发布了新的文献求助10
9秒前
陈住气给陈住气的求助进行了留言
11秒前
树季大王关注了科研通微信公众号
11秒前
长情青烟完成签到,获得积分10
11秒前
奔波儿灞完成签到,获得积分20
11秒前
12秒前
chen发布了新的文献求助10
12秒前
pjh完成签到,获得积分10
12秒前
藤藤发布了新的文献求助10
13秒前
zzn完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
tamo关注了科研通微信公众号
15秒前
16秒前
16秒前
花椒完成签到,获得积分10
18秒前
18秒前
18秒前
韦韦完成签到,获得积分10
19秒前
123456发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148736
求助须知:如何正确求助?哪些是违规求助? 2799755
关于积分的说明 7836820
捐赠科研通 2457225
什么是DOI,文献DOI怎么找? 1307810
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663