CT whole lung radiomic nomogram: a potential biomarker for lung function evaluation and identification of COPD

医学 列线图 慢性阻塞性肺病 接收机工作特性 逻辑回归 置信区间 阶段(地层学) 曲线下面积 放射科 肺功能测试 内科学 生物 古生物学
作者
TaoHu Zhou,Xiuxiu Zhou,Jiong Ni,Yanqing Ma,Fangyi Xu,Bing Fan,Yu Guan,Xinang Jiang,Xiaoqing Lin,Jie Li,Yi Xia,Xiang Wang,Yun Wang,Wenjun Huang,Wenting Tu,Peng Dong,Zhao-Bin Li,Shiyuan Liu,Li Fan
出处
期刊:Military Medical Research [Springer Nature]
卷期号:11 (1) 被引量:10
标识
DOI:10.1186/s40779-024-00516-9
摘要

Abstract Background Computed tomography (CT) plays a great role in characterizing and quantifying changes in lung structure and function of chronic obstructive pulmonary disease (COPD). This study aimed to explore the performance of CT-based whole lung radiomic in discriminating COPD patients and non-COPD patients. Methods This retrospective study was performed on 2785 patients who underwent pulmonary function examination in 5 hospitals and were divided into non-COPD group and COPD group. The radiomic features of the whole lung volume were extracted. Least absolute shrinkage and selection operator (LASSO) logistic regression was applied for feature selection and radiomic signature construction. A radiomic nomogram was established by combining the radiomic score and clinical factors. Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were used to evaluate the predictive performance of the radiomic nomogram in the training, internal validation, and independent external validation cohorts. Results Eighteen radiomic features were collected from the whole lung volume to construct a radiomic model. The area under the curve (AUC) of the radiomic model in the training, internal, and independent external validation cohorts were 0.888 [95% confidence interval (CI) 0.869–0.906], 0.874 (95%CI 0.844–0.904) and 0.846 (95%CI 0.822–0.870), respectively. All were higher than the clinical model (AUC were 0.732, 0.714, and 0.777, respectively, P < 0.001). DCA demonstrated that the nomogram constructed by combining radiomic score, age, sex, height, and smoking status was superior to the clinical factor model. Conclusions The intuitive nomogram constructed by CT-based whole-lung radiomic has shown good performance and high accuracy in identifying COPD in this multicenter study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰姗发布了新的文献求助10
1秒前
3秒前
4秒前
漂亮巧荷发布了新的文献求助20
4秒前
Efan给Efan的求助进行了留言
4秒前
4秒前
彭于彦祖应助郁浅采纳,获得100
5秒前
小猫咪完成签到,获得积分10
5秒前
愉快涵菱完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
每天都在掉头发完成签到,获得积分10
7秒前
坚定的莹完成签到,获得积分10
7秒前
科研大狗发布了新的文献求助10
8秒前
8秒前
8秒前
浮游应助王滕采纳,获得10
9秒前
10秒前
英姑应助WWXWWX采纳,获得10
10秒前
隐形曼青应助赫连烙采纳,获得10
12秒前
renwoxing发布了新的文献求助10
12秒前
13秒前
Yang应助多情的青曼采纳,获得10
13秒前
里里完成签到,获得积分10
14秒前
明明发布了新的文献求助10
15秒前
15秒前
UD发布了新的文献求助10
16秒前
16秒前
17秒前
万能图书馆应助lllll采纳,获得10
17秒前
传奇3应助西瓜采纳,获得10
19秒前
19秒前
细心笑卉完成签到 ,获得积分10
19秒前
yan123发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
21秒前
tu完成签到,获得积分10
21秒前
yn发布了新的文献求助10
23秒前
小丁发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507123
求助须知:如何正确求助?哪些是违规求助? 4602518
关于积分的说明 14481925
捐赠科研通 4536520
什么是DOI,文献DOI怎么找? 2486226
邀请新用户注册赠送积分活动 1468816
关于科研通互助平台的介绍 1441292