CT whole lung radiomic nomogram: a potential biomarker for lung function evaluation and identification of COPD

医学 列线图 慢性阻塞性肺病 接收机工作特性 逻辑回归 置信区间 阶段(地层学) 曲线下面积 放射科 肺功能测试 内科学 生物 古生物学
作者
TaoHu Zhou,Xiuxiu Zhou,Jiong Ni,Yanqing Ma,Fangyi Xu,Bing Fan,Yu Guan,Xinang Jiang,Xiaoqing Lin,Jie Li,Yi Xia,Xiang Wang,Yun Wang,Wenjun Huang,Wenting Tu,Peng Dong,Zhao-Bin Li,Shiyuan Liu,Li Fan
出处
期刊:Military Medical Research [Springer Nature]
卷期号:11 (1) 被引量:10
标识
DOI:10.1186/s40779-024-00516-9
摘要

Abstract Background Computed tomography (CT) plays a great role in characterizing and quantifying changes in lung structure and function of chronic obstructive pulmonary disease (COPD). This study aimed to explore the performance of CT-based whole lung radiomic in discriminating COPD patients and non-COPD patients. Methods This retrospective study was performed on 2785 patients who underwent pulmonary function examination in 5 hospitals and were divided into non-COPD group and COPD group. The radiomic features of the whole lung volume were extracted. Least absolute shrinkage and selection operator (LASSO) logistic regression was applied for feature selection and radiomic signature construction. A radiomic nomogram was established by combining the radiomic score and clinical factors. Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were used to evaluate the predictive performance of the radiomic nomogram in the training, internal validation, and independent external validation cohorts. Results Eighteen radiomic features were collected from the whole lung volume to construct a radiomic model. The area under the curve (AUC) of the radiomic model in the training, internal, and independent external validation cohorts were 0.888 [95% confidence interval (CI) 0.869–0.906], 0.874 (95%CI 0.844–0.904) and 0.846 (95%CI 0.822–0.870), respectively. All were higher than the clinical model (AUC were 0.732, 0.714, and 0.777, respectively, P < 0.001). DCA demonstrated that the nomogram constructed by combining radiomic score, age, sex, height, and smoking status was superior to the clinical factor model. Conclusions The intuitive nomogram constructed by CT-based whole-lung radiomic has shown good performance and high accuracy in identifying COPD in this multicenter study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桐桐应助Oasis采纳,获得10
1秒前
万能图书馆应助贾纪原采纳,获得10
1秒前
香蕉觅云应助lizzyleeee采纳,获得10
1秒前
称心芷巧完成签到,获得积分10
2秒前
2秒前
Hong完成签到,获得积分10
3秒前
3秒前
4秒前
kakainho完成签到,获得积分10
4秒前
WWW完成签到,获得积分10
4秒前
何故完成签到 ,获得积分10
6秒前
6秒前
可燃冰完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
WWW发布了新的文献求助10
9秒前
蓝天完成签到,获得积分10
9秒前
思源应助汪辉采纳,获得10
10秒前
香蕉觅云应助qqwxp采纳,获得10
11秒前
12秒前
12秒前
布丁完成签到,获得积分10
12秒前
12秒前
aifeeling完成签到,获得积分10
12秒前
凉意发布了新的文献求助10
13秒前
科研通AI2S应助高兴的海亦采纳,获得10
13秒前
Akim应助高兴的海亦采纳,获得10
13秒前
13秒前
Hello应助高兴的海亦采纳,获得10
13秒前
SciGPT应助高兴的海亦采纳,获得10
13秒前
英姑应助高兴的海亦采纳,获得10
13秒前
NexusExplorer应助高兴的海亦采纳,获得10
13秒前
科研通AI2S应助高兴的海亦采纳,获得10
13秒前
斯文败类应助高兴的海亦采纳,获得10
13秒前
李爱国应助高兴的海亦采纳,获得10
13秒前
14秒前
14秒前
小仙完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424595
求助须知:如何正确求助?哪些是违规求助? 4538935
关于积分的说明 14164426
捐赠科研通 4455911
什么是DOI,文献DOI怎么找? 2443990
邀请新用户注册赠送积分活动 1435069
关于科研通互助平台的介绍 1412452